Effect of titanium exposure on embryonic development during pre-implantation period in rats

Bushra Malik & A O Prakash*
Laboratory of Contraceptive Research and Reproductive Health, School of Studies in Zoology, Jiwaji University, Gwalior 474 011, India
and
Meenu Rai
Cancer Hospital and Research Institute, Gwalior 474 011, India

Received 13 May 1999; revised 3 August 2000

Doses of titanium trichloride (1/10^th and 1/5^th of LD_50) were administered once and daily to pregnant rats to assess their effect on embryonic development. 1/5^th dose of TiCl_3 administered once orally on 1st, 2nd and 3rd day post-coitum. Similarly 1/10^th of LD_50 was administered daily. Results revealed that 1/10^th LD_50 dose of TiCl_3 was more effective during pre-implantation period as number of 4 and 8-celled embryos decreased as compared to 1/5^th. Delayed hatching of the blastocysts on day 5 was registered in TiCl_3 treated dam.

Identification of environmental agents that have adverse effect on reproductive health is particularly challenging. Environmental toxicants or xenobiotics interfere with reproduction. In laboratory animals, toxicants have been reported to impair the early gestational development of the embryos as revealed by in vitro studies. Titanium is a grey metal and it’s powder is highly flammable. It is used in explosive and chemical industries. Due to it’s corrosive resistance properties and lustering nature, it is used in electronic devices, paints, and cosmetics. Tipton et al have observed toxic effect of some titanium compounds. Titanium dust in high concentration has been reported in workers manufacturing titanium hydride. Titanium induced mutagenicity has also been shown. Pre-implantation mammalian embryonic impairment by environmental chemicals has been reported. Some of the metals have shown their effect on this developmental stage. Till date no work has been reported on titanium metal whether it effects the embryos during pre-implantation period. Oral administration of titanium trichloride to female rats is slightly toxic, which may effect the reproductive system in rats. Therefore, the present study is an attempt to elucidate the effect of titanium trichloride on the embryos when exposed during earlier days of gestation (day 1-5 postcoitum).

Adult cyclic female rats of Wistar strain (140±10g) were obtained from the animal colony of the department and were kept under uniform husbandry conditions of light (14L : 10D), and temperature (26°C ± 1°C). These animals were given “Lipton Indian Ltd”. Gold Mohur rat pelleted diet and water ad libitum.

Female rats were caged with adult males of Wistar strain of proven fertility in the ratio of 2:1 and next morning the vaginal smear was examined through microscope as well as morphologically. The presence of vaginal plug and the spermatozoa in the smear confirmed the mating and designated as day 1 of pregnancy. Mated female rats were kept in separated cages and randomly divided into different groups.

Titanium trichloride (Thomas Private Limited, Bombay) was diluted with water and 1/5^th and 1/10^th of LD_50 (4.30g/kg) doses were prepared freshly at the time of administration. Animals were divided into following four sets.

Set -1—Animals of set 1 were further divided into 4 groups. Group 1 served as control which received vehicle only (po) Animals of group 2 were administered with single dose of 1/5^th of LD_50 of titanium trichloride (po) on day 1 of pregnancy. Animals of group 3 received single dose of 1/5^th of LD_50 of titanium trichloride on 2nd day of pregnancy. Similarly the animals of group 4 received/dose of
titanium trichloride (1/5th of LD₅₀) once (po) on 3rd day of pregnancy.

Set-2—Animals of set 2 were divided into 4 groups. Group 1 animals served as control which received vehicle only (po). Animals of group 2 received 1/10th of LD₅₀ of titanium trichloride through po on day 1 of pregnancy. The animals of group 3 were administered (po) 1/10th of LD₅₀ of titanium trichloride daily for 2 days (day 1 and 2 post-coitum). The animal of group 4 received the same amount of titanium trichloride daily for 3 days (day 1, 2, and 3 of post-coitum).

On day 4 the animals of set 1 and 2 were sacrificed by cervical dislocation. Pre-implantation embryos were collected by rupturing the ampulla of the fallopian tube and were flushed with phosphate buffer. Even the uterine horns were also flushed. These embryos were collected and kept in 1% solution of aqueous sodium citrate for about 5 min and then were replaced in 5 μl citrate solution on a clear microslide. Mixture of methanol and acetic acid in 3:1 ratio was added dropwise on one side of the slide and was allowed to flow over the embryos. The excess of the citrate solution was removed with the help of pipette and soaked with filter paper strip and finally the embryos were spread over the slide. Slides were dried, stained with 1% aqueous solution of toluidine blue for 15 min. The embryos were washed with water and cells in the embryos were counted under microscope.

Set-3 and 4—Treatment was same as in set 1 and 2. The animals of set 3 and 4 were sacrificed on 5th day of pregnancy and their uterine horns were flushed with phosphate buffer and the embryos were collected. Although the fallopian tube may not show the presence of embryos, it was also flushed. Embryos were collected and treated with 1% aqueous solution of citrate for 5 min. These were processed in the similar manner as describe under set 1 and 2. Finally the embryos were observed for the presence zona pellucida. The embryos which did not show zona pellucida (shedded zona pellucida) were considered as hatched-out blastocysts. Results were analysed statistically using t test.

The results are presented in Tables 1 and 2.

Table 1—Effect of titanium trichloride on pre-implantation period (1 to 5th day) of embryonic development in rats.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of embryos examined</th>
<th>No. of rats used</th>
<th>Celled stages observed after 72 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5th LD₅₀, once (po)</td>
<td>2 celled</td>
<td>4 celled</td>
<td>8 celled</td>
</tr>
<tr>
<td>Control (vehicle only)</td>
<td>85</td>
<td>6</td>
<td>20(23.5)</td>
</tr>
<tr>
<td>On 1st day post-coitum</td>
<td>90</td>
<td>6</td>
<td>23(25.5)</td>
</tr>
<tr>
<td>On 2nd day post-coitum</td>
<td>75</td>
<td>5</td>
<td>19(25.3)</td>
</tr>
<tr>
<td>On 3rd day post-coitum</td>
<td>80</td>
<td>5</td>
<td>36(45.5)*</td>
</tr>
<tr>
<td>1/10th LD₅₀, daily administered, po</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control (vehicle only)</td>
<td>90</td>
<td>6</td>
<td>21(23.3)</td>
</tr>
<tr>
<td>On 1st day post-coitum</td>
<td>85</td>
<td>6</td>
<td>21(24.7)</td>
</tr>
<tr>
<td>On 1st and 2nd day post-coitum</td>
<td>70</td>
<td>5</td>
<td>25(35.7)</td>
</tr>
<tr>
<td>On 1st, 2nd and 3rd day post-coitum</td>
<td>75</td>
<td>5</td>
<td>34(45.3)*</td>
</tr>
</tbody>
</table>

*Values are statistically significant with respect to their control (P<0.05). Figures in parentheses are percent celled stage.
administration of the toxicants may be

blastocele/blastotoxic and this activity is exclusively
mediated through the transportation of toxicants from
uterine fluid to the transportation of toxicants from
uterine fluid to the blastocysts as there is no
mechanism of filtration of toxicants like placenta.

It has also been observed in present studies that the
administration of titanium trichloride to female rats
before implantation at 1/5th and 1/10th of LD₅₀ doses
reduced the number of cells in embryos. The number
of 2 and 4-cells in embryos was increased
significantly (Table 1). On the basis of these findings
it may be explained that administration of titanium
trichloride may interfere with the division of cells in
the embryos and arrest the cell-division at 2 or 4-
celled stage. Consequently the number of 8-celled
embryos was decreased. This may also be due to the
delay in cell division following conception, or delay
in first division or delay in part of population which
would then be eliminated before implantation. On the
basis of these finding it can be said that these
embryos may lost their vitality before implantation.
Jacquet et al.,10 have reported similar findings when
lead was administered at zero day of pregnancy.
Metals have effect on embryos11. Nilsson et al.,12 have
also reported the transportation of lead from uterine
epithelium to uterine fluid which was then taken up
by the blastocysts. This supports the present findings,
that the delayed hatching of blastocysts on day 5 was
registered in titanium trichloride treated dams. Effects
was observed in both the doses of 1/5th and 1/10th of
LD₅₀ of titanium trichloride(Table 2). Implantation is
one of the complex process in which the blastocysts
first hatch from zona pellucida and then implant on
the crypts of luminal epithelium. Without hatching
the further development of embryos is liable to be
inhibited which may result in defective invasion in
uterine endometrium. Trophoblast invasion is
reported to be more susceptible to some metals than
early post-implantation development. Wide et al.,13
reported that after examination of the surface of day 5
mouse blastocysts showed that shedding of zona
pellucida in some cases failed to occur. It is thus
concluded that the administration of titanium
trichloride before implantation to female rats caused
embryo toxicity and results in the impairment of
embryonic development by arresting the cell division.

Authors are thankful to University Grants
Commission, New-Delhi for financial assistance and
to Prof. R. Mathur for necessary facilities.

References

1 Tipton IH, Stewart PL, Martin PG, Trace elements in diets
and excreta, Health phys, 12 (1966) 1683.
2 Brahnova IT & Skurko GA, Hygienic assessment of the
effect produced on the body by Transition metal hybrides
with due regard for their electronic and crystal structure.,
Gig. Sanit,37 (1973) 36.
3 Sunderman FN, Carcinogenic effects of metals, Fed Proc, 37
(1978) 40.

5 Lt wav-Mann C, Biochemical approach to the study of ovum implantation in the rabbit, Mem Soc Endocrine, 2 (1959) 35.


7 Wide M, Effect of inorganic lead on the mouse blastocysts in vitro, Teratology, 17 (1978) 165.


10 Jacquet P, Leonard A & Gerber GB, Action of lead on early division of the mouse embryo, Toxicology, 6 (1976) 129.


13 Wide M & Nilsson BO, Differential Susceptibility of the embryo to inorganic lead during Pre-implantation in the mouse, Teratology, 16 (1977) 273.