Antinociceptive action of FK506 in mice

Amanpreet Singh, Gaurav Kumar, Pattipati S Naidu & Shrinivas K Kulkarni*

Pharmacology Division, University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160014, India

Received 20 February 2003; revised 10 June 2003

Immunophilins are abundantly present in the brain as compared to the immune system. Immunophilin-binding agents like FK506 are known to inactivate neuronal nitric oxide synthase (nNOS) by inhibiting calcineurin and decrease the production of nitric oxide. It has been demonstrated to have pro-nociceptive activity in the spinal cord. NO donors, like L-arginine, enhanced the release of substance P and calcineurin gene-related peptide which are involved in nociception in the spinal cord. On the other hand, nitric oxide synthase (NOS) inhibitors like L-NAME abolished the antinociceptive response in tail flick assays.

FK506 (tacrolimus), an immunosuppressant drug isolated from Streptomyces tsukubaensis, is used worldwide to prevent allograft rejection and with relatively diminished side effects, notably nephrotoxicity. FK506 has shown neuroprotective effect against 6-OHDA-induced toxicity in mice and also reduced the increased level of TNF-alpha level in the nigrostriatal dopaminergic region injured by 6-OHDA in rats. It has been shown that immunophilins, protein receptors for immunosuppressant drugs like cyclosporine and FK506, are widely distributed in the brain as compared to immune system. One of the important roles of immunophilins in the neural functions envisaged is the regulation of NO-induced neurotoxicity. FK506 by inhibiting calcineurin indirectly reduces the catalytic activity of nNOS thereby decreasing NO production. Thus it provides neuroprotection like other NOS inhibitors.

As stated above NOS plays an important role in both nociception and antinociception. In the present study, the NOS inactivating property of FK506 was utilized to examine its role in the modulation of tail flick response. Further, the possible involvement of L-arginine NO pathway in this response was evaluated.

Materials and Methods

Animals — Male albino mice (Laka strain) of either sex (20-30g), bred in Central Animal House facility of the Panjab University were used. The animals were housed under standard laboratory conditions, maintained on a natural light and dark cycle and had free access to food and water. Animals were acclimatized to laboratory conditions before the test. All experiments were carried out between 0900 and 1700 hrs. The experimental protocols were approved by the Institutional Ethics Committee and conducted according to the Indian National Science Academy guidelines for the use and care of experimental animals. Each mouse was used only once and each treatment group consisted of 6 animals.

Tail-flick test (radiant heat-induced nociception) — The analgesic response was determined by measuring the tail-flick latency to radiant heat. The baseline latency to the tail withdrawal from the radiant heat...
Results were expressed as effect being observed with 3 mg/kg after 2 min. The inhibition did not produce any significant change in tail flick latency, while a higher dose (40 mg/kg) increased the latency. Pretreatment with l-NAME significantly potentiated the antinociceptive effect of FKS06 (0.5 mg/kg) (Fig. 2). L-arginine, a NO donor and a NOS substrate showed a significant nociceptive effect per se in doses studied (100, 200 and 400 mg/kg). There was a significant reduction in tail flick latency at 200 and 400 mg/kg doses. Pretreatment with L-arginine also reversed the antinociceptive effect of FKS06 (3 mg/kg). At a dose of 200 mg/kg, L-arginine completely inhibited the FKS06-induced antinociception, while the higher dose of l-arginine (400 mg/kg) produced pronociception in FKS06-treated animals (Fig. 3). Concomitant administration of L-NAME (20 and 40 mg/kg) with L-arginine (200 mg/kg) reversed the L-arginine-induced inhibition of FKS06 (3 mg/kg) antinociception (Fig. 4).

Discussion
In acute administration of FK506 produced antinociceptive effect in the tail-flick assay. L-arginine, a NOS substrate completely and dose dependently reversed the antinociceptive effect of FK506, L-NAME, a NOS inhibitor on the other hand potentiated the effect of FK506.

Immunophilins are the receptor proteins for the major immunosuppressant drugs such as cyclosporine A, FK506 and rapamycin. The majority of the research on immunophilins and their ligands has focused on the cells of the immune system, especially lymphocytes, but the findings that immunophilins are abundantly present in the nervous system have led to the investigations on the role of immunophilins in the neural functions. These include regulation of NO toxicity, neurotransmitter release, intercellular calcium flux, as well as neurotrophic influences with possible therapeutic potentials.

In the nervous system, FK506 by binding to calcineurin, increases the phosphorylated levels of nNOS causing a reduction in the catalytic levels of nNOS; which may contribute to the neuroprotective effect as shown by other NOS inhibitors. The doses employed in the present study have been reported to be insufficient to prevent rejection of neuronal transplants in the rat and hence appears to lack immunosuppressive effects. However, FK506 has been shown to exhibit neuroprotection even in very small doses (% of the immunosuppressive dose) in animal models of neuroprotection.

Nociception mechanism(s) known are well reported to involve L-arginine NO pathway. The findings that L-NAME produces antinociception at high doses and l-arginine produces nociception are in accordance with previous reports. The inhibitors of NOS can produce antinociception at high doses and NOS substrates may have per se antinociceptive effect, respectively.

In the nervous system, FK506 by binding to calcineurin, increases the phosphorylated levels of nNOS causing a reduction in the catalytic levels of nNOS; which may contribute to the neuroprotective effect as shown by other NOS inhibitors. The doses employed in the present study have been reported to be insufficient to prevent rejection of neuronal transplants in the rat and hence appears to lack immunosuppressive effects. However, FK506 has been shown to exhibit neuroprotection even in very small doses (% of the immunosuppressive dose) in animal models of neuroprotection.

Nociception mechanism(s) known are well reported to involve L-arginine NO pathway. The findings that L-NAME produces antinociception at high doses and l-arginine produces nociception are in accordance with previous reports. The inhibitors of NOS can produce antinociception at high doses and NOS substrates may have per se antinociceptive effect, respectively.
Interestingly, in the present study L-NAME dose dependently potentiated the FK506-induced antinociception. A reduction in the activity of the NOS in the nervous system could be the probable mechanism of FK506-induced antinociception. The reversal of FK506-induced antinociception by L-arginine or facilitation further supports this hypothesis. FK506-induced antinociception was abolished by lower dose of L-arginine (100 mg/kg); at this dose it did not produce any nociception per se. Thus, the increased NO synthesis due to L-arginine may have compensated for the decreased NOS activity due to FK506.

Concomitant administration of L-NAME with L-arginine blocked the inhibitory effect of L-arginine on FK506-induced antinociception in a dose-dependent

Fig. 1 — Time and dose-dependent antinociception induced by acute administration of FK506 (0.5-3 mg/kg, ip). Values are mean ± SE. *P<0.05 as compared to the vehicle treated group (n = 5-8).

Fig. 2 — Effect of L-NAME (10, 20 and 40 mg/kg, ip) on the antinociceptive action of FK506 (0.5 mg/kg, ip). L-NAME was administered 30 min and 150 min before the tail flick test. Values are mean ± SE. P values:*P<0.05 as compared to the vehicle treated group. *P<0.05 as compared to the FK506 (0.5 mg/kg) treated group (n= 5-8); *P<0.05 as compared to the L-NAME (40 mg/kg) treated group
manner. This further confirms the hypothesis that FK506 has a modulatory effect on NOS and thus NO synthesis. This is in accordance with the fact that L-NAME in a dose dependent manner reverses the effect of L-arginine in morphine analgesia. FK506 and other non-immunosuppressive derivatives are in clinical trials for their use in CNS disorders such as Parkinson and Alzheimer's diseases but there are no reports till date on the clinical use of FK506 as an antinociceptive agent. Further studies are required to establish the use of FK506 and other non-immunosuppressive derivatives as analgesics clinically. In conclusion FK506 produces an antinociceptive response in a dose dependent manner on acute

![Graph](image-url)

Fig. 3 — Effect of l-arginine (50, 100, 200 and 400 mg/kg, ip) on the antinociceptive action of FK506 (3 mg/kg, ip). L-Arginine was administered for 30 min and 150 min before the tail flick test. Values are mean ± SE. P values: *<0.05 as compared to the vehicle treated group. a<0.05 as compared to the FK506 (3 mg/kg) treated group (n = 5-8). b,c,d<0.05 as compared to the L-arginine (100, 200, 400 mg/kg) respectively treated group.

![Graph](image-url)

Fig. 4 — Effect of concomitant administration of L-NAME (10, 20 and 40 mg/kg) with L-arginine (200 mg/kg, ip) on the antinociceptive action of FK506 (3 mg/kg, ip). L-NAME and L-arginine was administered 30 min and 150 min before the tail flick test. Values are mean ± SE. P values: *<0.05 as compared to the FK506 treated group; a<0.05 as compared to the FK506 (3 mg/kg)+ L-arginine(200 mg/kg) treated group (n = 5-8).
systemic administration and the possible involvement of NO L-arginine pathway in its antinociception actions is suggested.

References
3 Meller S T & Gebhart G F, Nitric oxide (NO) nociceptive processing in the spinal chord, Pain, 52 (1993) 123.
10 Cameron A M, Nucifora F C, Fung F F, Livingston D J, Aldape R A, Ross C A & Synder S H, FKBP 12 binds the inositol 1,4,5 triphosphate receptor at leucine-proline (1-400-1401) and anchors calcineurin to this FK506-like domain, J Biol Chem, 272 (1997) 27582.