Synthesis of newer selenadiazoles and thiadiazoles from their chroman-4-one precursors

M S Gaikwad, A S Mane, R V Hangarge, V P Chavan & M S Shingare

Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, India.

Received 16 May 2000; accepted (revised) 24 May 2002

A newer series of 13 compounds viz. 2-aryl-3,4-dihydrobenzopyrano [3,4-d]-1,2,3-selenadiazoles 3 and 2-aryl-3,4-dihydrobenzopyrano [3,4-d]-1,2,3-thiadiazoles 4 have been synthesized from their chroman-4-one precursors.

Substituted chroman-4-ones, a class of oxygen heterocycles are common among the natural products and are extensively used as synthetic intermediates. They have been used to prepare various fused heterocyclic ring systems and have been used for a wide range of pharmacological activity. Some chroman-4-ones with medical use are khellin, a coronary vasodilator, chroman-4-one-2-carboxylic acids, a spasmyloytic agent and disodium chromoglycate, and an antiallergenic drug.

On the other hand, it is well known that a number of heterocyclic compounds containing nitrogen and sulfur exhibit a wide variety of biological activities. However, reports about selenium containing heterocycles are relatively less, although some of them are used as chemotherapeutic agents; also some 1,2,3-selenathiadiazoles were found to possess significant antibacterial and antiviral activities.

The fused ring systems of chroman-4-ones are found to possess enhanced biological activities and the synthesis of the title heterocycles (selenadiazoles and thiadiazoles) is of growing interest, say, 1,2,3-selenathiadiazole rings, worked out by Bhaskar Reddy et al. fused to carbocyclic/heterocyclic rings. Therefore, as a part of continuation of our work on chromone nucleus, it was thought to synthesize 1,2,3-selenathiadiazoles fused to chroman-4-ones.

A series of such compounds as 2-aryl-3,4-dihydrobenzopyrano [3,4-d]-1,2,3-selenadiazoles 3 and 2-aryl-3,4-dihydrobenzopyrano [3,4-d]-1,2,3-thiadiazoles 4 have been synthesized (Scheme I). The carbonyl function in 1 (chroman-4-one) has been exploited for the synthesis of selenadiazoles 3 and thiadiazoles 4. Chroman-4-ones 1 on condensation with semicarbazide hydrochloride gave its semicarbazones 2 which on SeO2 oxidation afforded 3. On the other hand, 2 on treatment with thionyl chloride at -10 to 0°C yielded 4. The formation of the compounds 3 and 4 was confirmed as there were no characteristics absorptions at 3400 cm⁻¹ (NH) and 3200cm⁻¹ (NH2) and on the other hand the characteristic absorption bands for compounds 3 and 4 were observed at 1475 and 1487 (N=N), 700 (N-S-C), 685 (C-Se-N), 700 cm⁻¹(C-S-N), respectively. Also 1H NMR spectra for compounds 3 and 4 gave added confirmation for their formation as the spectra displayed peaks at δ 7.0-8.2 (8H, Ar-H) and at 6.6(s, O-C-H).

Experimental Section

Melting points were taken in open capillaries in paraffin oil-bath and are uncorrected. The purity of the compounds was checked on TLC. IR spectra were recorded in nujol on a Perkin-Elmer 337 spectrophotometer (λ max in cm⁻¹); and 1H NMR spectra on a Varian Gemini 200 MHz spectrometer using TMS as internal standard (chemical shifts in δ, ppm).

2-(4-Chlorophenyl)-3,4-dihydrobenzopyrano [3,4-d]-1,2,3-selenadiazoles 3b. Compound 2 (R= p-Cl),
1.5 g, 0.005 mole) was dissolved in 15-20 mL of acetic acid, warmed the solution in oil-bath to 60°C. To this was added SeO₂ (0.55 g, 0.005 mole) portionwise with constant stirring maintaining the temperature at 60°C. After the complete transfer of SeO₂ the reaction mixture was stirred for 3 hr maintaining the same temperature. The mixture was then cooled to room temperature, and poured on crushed ice, and digested for 30 min. The precipitate thus obtained was filtered, dried and purified by column chromatography to give the product 3b; yield 84%, m.p. 128°C; (Table I) IR (Nujol): 1475 (N=N), 1220 (C-O-C), 680 (C-Se-N) cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 7.2-8.2 (m, 8 H, Ar-H), 6.6 (s, 1 H, O-C-H); Mass: (M+ 348), (M+ 2 -350), 319 (98% aban.), 285 (100% base peak), 205 (45%); ¹³C NMR: 8 78.41 (C-2), 116.78 (C-9), 117.85 (C-8), 122.81 (C-6), 124.94 (C-7), 127.96 (C-5), 129.06 (C-1'), 130.35 (C-2', C-6'), 135.20 (C-3', C-5'), 138.40 (C-4'), 151.89 (C-3'), 153.50 (C-4), 159.46 (C-10).

2-(4-Chlorophenyl)-3,4-dihydrobenzopyran-3,4-d-1,2,3-thiadiazoles 4b. Redistilled thionyl chloride (5 mL) was taken in clean, dry 50 mL round bottom flask kept in a salt ice-bath and the temperature allowed to fall down up to -10°C. To it was added with constant magnetic stirring 1.578 g of compound 2b (R=p-Cl, 0.005 mole) in portions maintaining the temperature below 0°C. After the complete addition,

<table>
<thead>
<tr>
<th>Compd</th>
<th>R</th>
<th>m.p. (°C)</th>
<th>Yield (%)</th>
<th>Found (%) (Calcd.)</th>
<th>Compd</th>
<th>R</th>
<th>m.p. (°C)</th>
<th>Yield (%)</th>
<th>Found (%) (Calcd.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>C₆H₅</td>
<td>148-68</td>
<td>57.48</td>
<td>3.17 8.93</td>
<td>4a</td>
<td>C₆H₅</td>
<td>182-78</td>
<td>67.64</td>
<td>3.72 10.49</td>
</tr>
<tr>
<td>3b</td>
<td>p-Cl-C₆H₄</td>
<td>128-84</td>
<td>51.78</td>
<td>2.56 8.02</td>
<td>4b</td>
<td>p-Cl-C₆H₄</td>
<td>115-85</td>
<td>59.87</td>
<td>2.96 9.30</td>
</tr>
<tr>
<td>3c</td>
<td>p-MeOC₆H₄</td>
<td>173-69</td>
<td>55.96</td>
<td>3.45 8.15</td>
<td>4c</td>
<td>p-MeOC₆H₄</td>
<td>108-64</td>
<td>64.83</td>
<td>4.03 9.51</td>
</tr>
<tr>
<td>3d</td>
<td>p-MeC₆H₄</td>
<td>205-78</td>
<td>58.69</td>
<td>3.65 8.53</td>
<td>4d</td>
<td>p-MeC₆H₄</td>
<td>162-72</td>
<td>68.56</td>
<td>4.25 9.98</td>
</tr>
<tr>
<td>3e</td>
<td>p-NO₂C₆H₄</td>
<td>98-66</td>
<td>56.26</td>
<td>2.48 11.70</td>
<td>4e</td>
<td>p-NO₂C₆H₄</td>
<td>178-80</td>
<td>57.85</td>
<td>2.88 13.47</td>
</tr>
<tr>
<td>3f</td>
<td>o-CH₃C₆H₄</td>
<td>131-63</td>
<td>54.69</td>
<td>3.00 8.49</td>
<td>4f</td>
<td>o-CH₃C₆H₄</td>
<td>118-60</td>
<td>63.79</td>
<td>3.51 9.90</td>
</tr>
<tr>
<td>3g</td>
<td>o-ClC₆H₄</td>
<td>78-71</td>
<td>51.77</td>
<td>2.57 8.04</td>
<td>4g</td>
<td>o-ClC₆H₄</td>
<td>171-80</td>
<td>59.87</td>
<td>2.97 9.28</td>
</tr>
<tr>
<td>3h</td>
<td>m-ClC₆H₄</td>
<td>100-60</td>
<td>51.79</td>
<td>2.56 8.02</td>
<td>4h</td>
<td>m-ClC₆H₄</td>
<td>148-69</td>
<td>59.88</td>
<td>2.96 9.29</td>
</tr>
<tr>
<td>3i</td>
<td>(MeO)₂C₆H₄</td>
<td>184-81</td>
<td>53.57</td>
<td>3.95 6.7</td>
<td>4i</td>
<td>(MeO)₂C₆H₄</td>
<td>98-82</td>
<td>60.64</td>
<td>4.46 7.84</td>
</tr>
<tr>
<td>3j</td>
<td>Cinnamyl</td>
<td>112-77</td>
<td>57.48</td>
<td>3.18 8.92</td>
<td>4j</td>
<td>Cinnamyl</td>
<td>130-73</td>
<td>67.63</td>
<td>3.72 10.49</td>
</tr>
<tr>
<td>3k</td>
<td>Faryl</td>
<td>139-65</td>
<td>51.46</td>
<td>2.61 8.21</td>
<td>4k</td>
<td>Faryl</td>
<td>81</td>
<td>60.92</td>
<td>3.09 10.90</td>
</tr>
<tr>
<td>3l</td>
<td>o-MeC₆H₄</td>
<td>104-70</td>
<td>58.70</td>
<td>3.64 8.55</td>
<td>4l</td>
<td>o-MeC₆H₄</td>
<td>120-76</td>
<td>68.54</td>
<td>4.25 9.98</td>
</tr>
<tr>
<td>3m</td>
<td>m-MeC₆H₄</td>
<td>176-58</td>
<td>58.69</td>
<td>3.65 8.52</td>
<td>4m</td>
<td>m-MeC₆H₄</td>
<td>138-70</td>
<td>68.56</td>
<td>4.26 9.97</td>
</tr>
</tbody>
</table>

Solvent for crystallization: Ethanol

| Table I—Characterization data of compounds 3a-m and 4a-m |
temperature was allowed to rise to room temperature and 30 mL of dichloromethane was added. The mixture was stirred for further 1 hr. Excess thionyl chloride was decomposed using saturated NaHCO₃ solution and the product 4b isolated using extractive isolation technique. Further purification was achieved by column chromatography, yield 86%, mp 115°C (Table I); IR (Nujol): 1487 (N=N), 1230 (C-O-C), 700 (C-S-N) cm⁻¹; ¹H NMR (200MHz, CDCl₃): δ 7.0-8.2 (m, 8H, ArH), 6.7 (s, 1H, O-C-H); Mass: (M⁺-300), M⁺2 302, m/z 271 (100% base peak), 237 (95%), 228 (10%), 208 (20%), 165 (15%) etc.

4d: ¹H NMR: δ 7.0-7.5 (m, Ar-H, 8H), 6.2 (s, O-C-H, 1H), 2.6 (s, CH₃ group, 3H), 4e: ¹H NMR: δ 7.5-8.4 (m, Ar-H, 8H), 6.7 (s, O-C-H, 1H).

Acknowledgement
The authors are thankful to the Head, Department of Chemistry, Dr B A Marathwada University for providing necessary facilities. We are thankful to Drs P P Wadgaonkar and B M Bhawal, NCL, Pune for providing spectral and elemental analysis. One of the authors (MSG) is thankful to the Principal, P L Deshmukh, Yogeshwari Mahavidyalaya Ambejogi for his kind help and also thankful to UGC, New Delhi for awarding Teacher Research Fellowship under faculty improvement programme.

References