Molecular complexes of paraquat (PQ) with a few drug intermediates in alkaline medium, viz. 2,4,6-trimethylphenol, 4-benzyloxyphenol, 2-cyanophenol, 4-cyanophenol and a few drugs, viz. diclofenac sodium, salmeterol, omeprazole, esomeprazole and pantoprazole in methanol have been studied spectrophotometrically. All the complexes exhibit one charge transfer band each in the region where neither of the components have any absorption. The stoichiometry of each complex is found to be 1:1 from Job’s method. The ionization potentials of the donors (drugs) have been determined from the position of CT band of PQ – drug complex. The stability constants of the complexes have been determined from Rose-Drago method. Extinction coefficients \(\varepsilon\), oscillatory strengths \(f\) and transition dipole moments \(D\) of CT complexes have also been determined. For a given complex the extinction coefficients, the oscillatory strengths and the dipole moments are found to be almost independent of temperature. The constancy of \(\varepsilon, f,\) and \(D\) over the temperature range studied rules out the possibility of existence of the complexes other than 1:1 stoichiometry.

Keywords: Charge transfer complexes, Ionization potential, Paraquat, Thermodynamic parameters

Paraquat (PQ) is an important biologically active molecule. It was proved to be herbicide and a weedicide either independently or mixed with other activating compounds. It is a chief component in the commercial herbicides (grammaxone) and weedol. Paraquat is a diocation and possesses a strong electron acceptor character with an electron affinity\(^1\) \(1.24 \text{ eV}\). Although the biological activity of paraquat is known for a long time, its property of forming CT complexes, for the first time, was reported by Nakahara and Wang\(^2\), using inorganic anions and anionic metal complexes as donors\(^3\)\(^-\)\(^6\). Later, the electron donor-acceptor interaction between some neutral organic donors and paraquat has been carried out by White\(^1\). Subsequently paraquat attracted the attention of many researchers in the field of molecular complexes and it has been shown to form CT complexes with a variety of electron donors\(^7\)\(^-\)\(^14\). The CT complexes of anilines, phenyl hydrazones, crown ethers, phenolates and purinates with PQ have already been reported\(^15\)\(^-\)\(^16\). The formation of molecular complex of PQ with thiafulvalenes was reported by Rahman et al.\(^17\). Continuing our studies on drugs chemistry, PQ as an acceptor has been tested for the formation of CT complexes. The successful results are reported in the present paper.

Experimental Procedure

Paraquat dichloride was prepared by the dimerisation of pyridine to 4,4’-bipyridyl, followed by quaternization with methyl chloride and isolation as the dihydrate\(^1\). Alternatively PQ dichloride was extracted from the commercial herbicide (grammaxone) by repeated recrystallization from water, ethanol and ethanol-acetone mixture. Triply distilled water was used to prepare aqueous solution of NaOH to produce alkaline PQ solution where necessary. The samples of the drugs were purified by the methods available in literature till TLC pure\(^18\). NaOH, ethanol, acetone and methanol were of the highest purity (BDH). Solvents were used without any further purification (BDH Spectrograde). Phenolic drugs were converted into their anions on addition of calculated amounts of NaOH. The IR and UV spectra of the samples tallied well with those of reported in literature. The UV-Vis spectra of the complexes were recorded on Shimadzu-240 and Elico SL 210 UV-Visible double beam spectrophotometers using a matched pair of quartz cuvettes of 10 mm path length (Fig. 1). The concentration of PQ was held constant at \(2 \times 10^{-2} \text{ M}\) while those of drugs varied between \(3 \times 10^{-3}\) and \(9 \times 10^{-2} \text{ M}\). The solutions concentration was kept constant at \(2 \times 10^{-3} \text{ M}\) for the production of complex with optical density between 0.08 and 1.6 absorbance units. The absorption bands due to acceptor or donor individually have fallen to the base line much
more before the wavelength of CT absorption, for example Salmeterol. However, the lower wavelength side of the CT bands is complicated by other absorption probably due to complexed donor. The complicated CT bands were analysed by using the following relationship put forward by Briegleb and Czekella:

\[
\frac{\nu_h - \nu_l}{2(\nu_m - \nu_l)} \approx 1.2
\]

where \(\nu_h\) and \(\nu_l\) refer to the frequency at half the maximum intensity on the high and low frequency side of the peak located at \(\nu_m\).

The stability constants of the CT complexes were determined by using the following Rose-Drago method:

\[
K^{-1} = \frac{d(e)}{-([Do] + [Ao]) + [Do][Ao]} \frac{e/d}{d}
\]

where \(d\) is the absorption; \(e\), the molar extinction coefficient of the complex; \([Ao]\) and \([Do]\) are the initial concentrations of acceptor and donor respectively.

Results and Discussion

Colourless aqueous solution of paraquat when mixed with 2,4,6-trimethylphenol, 4-benzyloxyphenol, 4-cyanophenol and 2-cyanophenol in alkaline medium produce characteristic colors (orange red, yellow and light yellow). Paraquat with methanolic solutions of salmeterol, diclofenac Na, omeprazole, esomeprazole and pantoprazole also produce characteristic colours. The production of characteristic colours is attributed to the formation of CT complexes between PQ and anions of drugs intermediates in aqueous solution and that between PQ and neutral drugs in methanolic solutions (Scheme 1). All the complexes exhibit one charge transfer band in the region where neither the free donor nor acceptor have any measurable absorption in these regions (Fig. 1). The colour changes observed and appearance of CT bands observed in their electronic spectra are attributed to the excitation of electron from the HOMO of donor to LUMO of acceptor. The positions of CT bands and other spectral characteristics are presented in Table 1. The position of CT bands (\(\lambda_{CT}\)) of drugs with PQ is found to be in the following order: 2,4,6-trimethylphenol > 4-benzyloxyphenol > salmeterol > 4-cyanophenol > 2-cyanophenol > diclofenac Na > omeprazole > esomeprazole > pantoprazole.

The energies of the intermolecular charge transfer bands of the complexes (\(E_{CT}\)) in solution are calculated from the frequencies of absorption and the values are reported in Table 1. The \(E_{CT}\) values are in the order 2,4,6-trimethylphenol < 4-benzyloxyphenol < salmeterol < 4-cyanophenol < 2-cyanophenol < diclofenac Na < omeprazole < esomeprazole < pantoprazole.

Ionization potentials of donors

The energies of CT bands are linearly related to the ionization potentials of the donors as shown by the following equation:

\[
h\nu_{CT} = aI_d - b
\]

where \(\nu_{CT}\) is the frequency of the CT band; \(I_d\), the ionization potential of donor; \(h\), the Planck’s constant; and \(a\) and \(b\) are constants depending on the acceptor and solvent. This relation is used for the determination of ionization potentials of the donors from the positions of CT bands. The values of the constants \(a\) and \(b\) of PQ complexes in aqueous medium, reported as 0.976 and -4.5eV respectively, are used for calculation of ionization potentials of 2,4,6-trimethylphenol, 4-benzyloxyphenol, 4-cyanophenol and 2-cyanophenol. The \(a\) and \(b\) values of PQ complexes in methanol reported as 0.90 and -4.19eV respectively are used for the calculation of ionization potentials of salmeterol, diclofenac Na, omeprazole, esomeprazole and pantoprazole.

Stoichiometry of complexes

The stoichiometry of the complexes is determined by Job’s continuous variation method using equimolar solutions of PQ and drugs. A maximum absorbance is observed at 0.5 mole fraction of the drug in each case and hence the complexes are inferred to have 1:1 composition.
The intersection points of Rose-Drago plots also indicate a 1:1 stoichiometry for the complexes. It is observed that the molar extinction coefficient (ε) for a given complex remains approximately constant over the temperature range studied. The constancy of ε may also be taken as a further evidence in support of species with 1:1 stoichiometry in all the PQ-drug complexes.

The intersection points of Rose-Drago plots also indicate a 1:1 stoichiometry for the complexes. It is observed that the molar extinction coefficient (ε) for a given complex remains approximately constant over the temperature range studied. The constancy of ε may also be taken as a further evidence in support of species with 1:1 stoichiometry in all the PQ-drug complexes.

Extinction coefficients (ε, oscillatory strengths (f) and transition dipole moments (D) of CT complexes

The extinction coefficients of the complexes are determined at different temperatures from the intersection points of Rose-Drago plots and are reported in Table 1. The extinction coefficient of a CT complex is found to be almost constant over the temperature range studied. The oscillatory strength (f) defined by Mullikan21 is calculated using the following equation:

$$f = 4.319 \times 10^{-9} \cdot \frac{\varepsilon_{\text{max}}}{\Delta \nu_{1/2}}$$

Transition dipole moments (D) of the complex as defined by Tsubomura et al.22, have also been computed from the extinction coefficients and half–band widths and are reported in Table 1. The relationship used is given below:

$$D = 0.09582 \left(\frac{\varepsilon_{\text{max}} \Delta \nu_{1/2}}{\nu_{\text{max}}} \right)^{1/2}$$

Table 1 — Spectral characteristics of charge transfer complexes of paraquat with drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>λ_{max} (nm)</th>
<th>E_{CT} (eV)</th>
<th>$v_{\text{CT}} \times 10^{-3}$ (cm$^{-1}$)</th>
<th>IP (eV)</th>
<th>$\Delta \nu_{1/2}$ (cm$^{-1}$)</th>
<th>ε_{max}</th>
<th>D (Å)</th>
<th>f (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,6-Trimethyl phenol</td>
<td>547</td>
<td>2.268</td>
<td>18.282</td>
<td>6.93</td>
<td>14428</td>
<td>560</td>
<td>8.79</td>
<td>0.030</td>
</tr>
<tr>
<td>4-Bezyloxyphenol</td>
<td>486</td>
<td>2.547</td>
<td>20.534</td>
<td>7.22</td>
<td>21946</td>
<td>300</td>
<td>5.98</td>
<td>0.015</td>
</tr>
<tr>
<td>Salmeterol</td>
<td>462</td>
<td>2.775</td>
<td>22.371</td>
<td>7.73</td>
<td>27375</td>
<td>220</td>
<td>4.93</td>
<td>0.010</td>
</tr>
<tr>
<td>4-Cyanaophenol</td>
<td>434</td>
<td>2.858</td>
<td>23.041</td>
<td>7.53</td>
<td>12822</td>
<td>200</td>
<td>7.58</td>
<td>0.015</td>
</tr>
<tr>
<td>2-Cyanaophenol</td>
<td>431</td>
<td>2.878</td>
<td>22.202</td>
<td>7.55</td>
<td>10825</td>
<td>200</td>
<td>8.01</td>
<td>0.016</td>
</tr>
<tr>
<td>Diclofenac Na</td>
<td>427</td>
<td>2.905</td>
<td>23.419</td>
<td>7.88</td>
<td>29539</td>
<td>640</td>
<td>8.51</td>
<td>0.031</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>423</td>
<td>2.932</td>
<td>23.641</td>
<td>7.91</td>
<td>30071</td>
<td>360</td>
<td>6.39</td>
<td>0.017</td>
</tr>
<tr>
<td>Esomeprazole</td>
<td>407</td>
<td>3.048</td>
<td>24.570</td>
<td>8.04</td>
<td>33354</td>
<td>355</td>
<td>6.09</td>
<td>0.016</td>
</tr>
<tr>
<td>Pantoprazole</td>
<td>402</td>
<td>3.086</td>
<td>24.876</td>
<td>8.08</td>
<td>33035</td>
<td>353</td>
<td>6.33</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Scheme 1 — Molecular complexes of drugs with paraquat (PQ)
Table 2 — Stability constants and thermodynamic parameters of charge transfer complexes of paraquat with drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Stability constants (K)</th>
<th>-ΔH K cal mol⁻¹</th>
<th>-ΔS Cal deg⁻¹ mol⁻¹</th>
<th>-ΔG K cal mol⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10°C (K₁₀)</td>
<td>20°C (K₂₀)</td>
<td>30°C (K₃₀)</td>
<td>40°C (K₄₀)</td>
</tr>
<tr>
<td>2,4,6-Trimethyl phenol</td>
<td>25.39</td>
<td>15.98</td>
<td>13.36</td>
<td>6.89</td>
</tr>
<tr>
<td>4-Bezyloxyphenol</td>
<td>14.18</td>
<td>9.46</td>
<td>6.49</td>
<td>4.56</td>
</tr>
<tr>
<td>Salmeterol</td>
<td>12.99</td>
<td>8.76</td>
<td>6.07</td>
<td>4.30</td>
</tr>
<tr>
<td>4-Cyanaophenol</td>
<td>8.94</td>
<td>6.37</td>
<td>4.64</td>
<td>3.46</td>
</tr>
<tr>
<td>2-Cyanaophenol</td>
<td>8.91</td>
<td>6.35</td>
<td>4.62</td>
<td>3.44</td>
</tr>
<tr>
<td>Diclofenac Na</td>
<td>8.95</td>
<td>6.38</td>
<td>4.65</td>
<td>3.47</td>
</tr>
<tr>
<td>Omeprazole</td>
<td>8.95</td>
<td>6.38</td>
<td>4.65</td>
<td>3.47</td>
</tr>
<tr>
<td>Esomeprazole</td>
<td>6.52</td>
<td>4.82</td>
<td>3.64</td>
<td>2.80</td>
</tr>
<tr>
<td>Pantoprazole</td>
<td>6.56</td>
<td>4.86</td>
<td>3.70</td>
<td>3.20</td>
</tr>
</tbody>
</table>

For a given complex the extinction coefficients, the oscillatory strengths and the dipole moments are found to be almost independent of temperature. The constancy of ε, f and D over the temperature range studied rules out the possibility of existence of the complexes other than 1:1 stoichiometry.

The randomness observed in ε may be due to contact charge transfer transition and randomness in f and D may be due to randomness in ε together with uncertainties in the measurement of Δν/Δν. The linear relation between for all

The formation constants (K) of the complexes are determined by Rose-Drago method. The formation constants of the complexes increase with electron releasing ability of the donors and are in the order: 2,4,6-trimethylphenol > 4-benzyloxyphenol > salmeterol > 4-cyanaophenol > 2-cyanaophenol > diclofenac Na > omeprazole > esomeprazole > pantoprazole.

The thermodynamic parameters, viz. ΔH and ΔS, are determined from the slope and intercept of the plot log K vs 1/T. The order of stability constants is parallel to those of wavelengths of absorption.

ΔG values are calculated using the relation ΔG = ΔH - TΔS. The enthalpies of formation are below 10 K Cal mol⁻¹, a characteristic feature of weak CT complexes. The ΔH, ΔS and ΔG values are found to increase with increase in electron releasing ability of the substituents (Table 2). A linear relationship is obtained between ΔH and ΔS for all the complexes. The negative enthalpies indicate that the complex formation is spontaneous while negative entropies indicate a loss in degree of freedom of the components upon complexation. The linear relation between ΔH and ΔS indicates that the complexation is unhindered by the substituents present on benzene ring of the drug.

Acknowledgement

Authors are thankful to Prof. G Venkateshwara, Head, Department of Chemistry, Nizam College for his suggestions. One of the authors (TV) is thankful to M Ravindra Reddy, Chairman, Managing Committee, SAP College, Vikarabad for providing facilities and to the UGC for financial assistance under major research project. Another author (PKR) is thankful to the Management of Siddhartha Junior College, Vikarabad for according permission to carry out the research work.

References