Rapid Communications

Reaction of anion radical chelates with acids: An unusual route to ruthenium azo species

Maya Shivakumar & Animesh Chakravorty*
Department of Inorganic Chemistry,
Indian Association for the Cultivation of Science,
Calcutta 700 032, India
Received 7 April 2000

The title anion radical chelates are of type [RuII(L-)(Cl)(CO)(PPh3)] where L is azo-2,2'-bipyridine (abp), 2-(p-chlorophenylazo)pyridine (Clpap) or 2-(phenylazo)pyridine (pap) and L- is the corresponding azo anion radical. These spontaneously reduce protons in solution and secondary reactions may then follow. In this manner (the acids being HPF6, HCl and HC=CPh), the following species have been isolated and structurally characterized: [Ru(abp)(Cl)(CO)(PPh3)]PF6, [Ru(Clpap)(Cl)(CO)(PPh3)].CH2Cl2 and [Ru(pap)(Cl)(CO)(PPh3)]Cl.

Azo anion radicals characterized by the [-N=N-] function have recently been isolated in the form of metal complexes.1-3 Our synthetic method consists of homolytic M–H cleavage, (Eq.1) where L is a chelating azo ligand and L- is the corresponding azo anion radical.1-3

\[M^+H + L \rightarrow M^L- + \frac{1}{2} H_2 \]

(1)

The ML- species have now been found to efficiently reduce protons in solution providing synthetic access to new species. A few results for M=Ru are reported in this communication.

Experimental

Room temperature magnetic moments were measured using a PAR-155 vibrating sample magnetometer and EPR spectra were recorded on a Varian E-109C spectrometer. Electrochemistry was done with a PAR 370-4 system4 and ¹H NMR spectra were recorded on a Bruker FT 300 MHz instrument. The X-ray structures were determined using a Siemens R3m/V diffractometer (Mo-Kα radiation) and SHELXTL-Ver.5.03 software.7 Further details can be found elsewhere.8

The azo ligands (L) concerning us here are abp, Clpap and pap and their chelation modes are as shown. The relevant complexes 1-7 are listed in Chart 1. Complexes 2 and 3 were made as

1 [Ru(abp')(Cl)(CO)(PPh3)]
2 [Ru(Clpap')(Cl)(CO)(PPh3)]
3 [Ru(pap')(Cl)(CO)(PPh3)]
4 [Ru(2Clpap)(Cl)(CO)(PPh3)]
5 [Ru(2pap)(Cl)(CO)(PPh3)]
6 [Ru(2pap)(Cl)(C≡CPh)(CO)(PPh3)]
7 [Ru(2pap)(Cl)(C≡CPh)(CO)(PPh3)]

Chart 1

reported earlier.1 The new radical complex 1 (µeff 1.86 µB, EPR, g = 2.00) was prepared by heating to reflux a mixture of abp and [Ru(H)(Cl)(CO)(PPh3)](ref.9) in the molar ratio 3:1 in dry heptane for 1h.

On cooling to room temperature, the green solution afforded 1 in 82% yield. Analytical data: Found (Calcd, %): C, 64.58(64.64); H, 4.21(4.39); N, 6.31(6.42). ¹PF6- was prepared by reacting 1 with NH4PF6 in 1:1 molar ratio in wet CH2Cl2–MeCN mixture followed by chromatographic work-up on a silica gel column using toluene:acetonitrile (3:1) mixture as
eluant; yield, 60%. Analytical data: Found(Calcd, %): C, 55.35(55.43); H, 3.68(3.76); N, 5.41(5.50). 4 was synthesized by passing HCl gas through a solution of 2 in benzene for 1h under stirring followed by slow evaporation; yield, 50%. Analytical data: Found(Calcd, %): C, 52.88(52.97); H, 3.29(3.38); N, 6.12(6.18). 7 was prepared by the reaction of 3 and PhC=CH in 1:2 molar ratio in CH$_2$Cl$_2$ under stirring for 12h. The deep blue solution upon evaporation to dryness afforded the solid which was washed with hexane to remove excess PhC=CH yielding 7 in 60% yield. Analytical data: Found(Calcd, %): C, 65.06(65.12); H, 3.74(3.82); N, 5.50(5.56).

Results and discussion

Green solution of 1 (2 and 3 behave similarly) is stable in benzene even in the presence of oxygen. Addition of acids such as MeC$_2$H$_4$, however, causes a rapid colour change to red due to quantitative formation of 1$^+$, (Eq. 2). This transformation is consistent with the cyclic-voltammetric E_{pa} (-0.30 V vs. SCE in CH$_2$Cl$_2$ solution) of 1. The salt 1$^+$PF$_6^-$ is isolated by reacting 1 with NH$_4$PF$_6$ in wet CH$_2$Cl$_2$-MeCN solution, the hydrolysis of PF$_6^-$ affording the required acid in situ.

For an acid whose conjugate base is a potent coordinating agent, further reactions may follow. Thus 2 (1 and 3 behave similarly) reacts with HCl gas in benzene transiently generating red 2$^+$ (already known as 2$^+$PF$_6^-$) which is then rapidly transformed to violet 4, (Eq. 3).

$$2^+ + \text{Cl}^- \rightarrow 4 + \text{PPh}_3$$ \hspace{1cm} (3)

The reaction of 3 (1 and 2 behave similarly) with the weak acid PhC=CH (pK_a 19) in CH$_2$Cl$_2$ affords 5 (an analogue of 4) as well as the acetylide 6. The HCl required for the formation of 5 presumably originates from CH$_2$Cl$_2$. A major point of interest is that 5 and 6 cocrystallize from this reaction medium in virtually 1:1 ratio affording the solvated entity, 7.CH$_2$Cl$_2$. In solution (CDCl$_3$) the latter displays 1H NMR signals due to both 5 and 6. Thus the pyridyl proton para to the N atom occurs as two equally intense triplets ($J = 7.3$ Hz) at 8.04 δ (5) and 7.93 δ (6).

The X-ray structures (excluding anion/solvent) of 1$^+$PF$_6^-$, 4.CH$_2$Cl$_2$, and 7.CH$_2$Cl$_2$ are shown in Figs. 1-3 and selected bond lengths are listed in Table 1. In each case the azo ligand constitutes a planar five-

<table>
<thead>
<tr>
<th>Table 1 - Selected bond distances (\AA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1$^+$PF$_6^-$</td>
</tr>
<tr>
<td>Ru-P</td>
</tr>
<tr>
<td>Ru-N(pyridine)</td>
</tr>
<tr>
<td>Ru-N(azo)</td>
</tr>
<tr>
<td>Ru-Cl</td>
</tr>
<tr>
<td>Ru-CO</td>
</tr>
<tr>
<td>N-N</td>
</tr>
</tbody>
</table>

Fig. 1 - Molecular view and atom labeling scheme for the cation in [RuII (abp)(Cl)(CO)(PPh$_3$)$_2$]PF$_6^-$, 1$^+$PF$_6^-$.

Fig. 2 - Molecular view and atom labeling scheme for [RuII (Clpap)(Cl)$_2$(CO)(PPh$_3$)$_2$]CH$_2$Cl$_2$, 4.CH$_2$Cl$_2$, (excluding CH$_2$Cl$_2$).
membered chelate ring and the N–N lengths lie in the nonradical range\(^3\) 1.28-1.29 Å. In 7 the position trans to \(\text{PPh}_3\) (position X in Fig. 3) is occupied by both \(\text{Cl}^-\) and PhC\(=\text{C}^-\) ligand (occupation factor 0.5 for each). In effect there is Cl\(^-\)/C\(=\text{C}^-\) disorder. The observed Ru–X length, 2.375(3) Å in Fig. 3 is weighted more towards Ru–Cl than Ru–C length because of the larger electron density of chlorine.

In summary the radicals 1-3 are sensitive to acids, weak or strong. The primary reaction is oxidation as in (Eq. 2) but secondary reactions can follow depending on the acid affording interesting acid-selective final products.

Acknowledgement

Financial supports received from the Indian National Science Academy, Department of Science and Technology and Council of Scientific and Industrial Research, New Delhi are acknowledged. Affiliation to Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India is acknowledged.

References