Synthesis and characterization of polyaniline salts with phenoxy acetic acids by emulsion polymerization

B Veerendra & D N Sathyarayana*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India.
E-mail: dns@ipc.iisc.ernet.in

Received 20 August 2004; revised 25 February 2005

Polyaniline salts have been synthesized by chemical oxidative polymerization of aniline in the presence of phenoxy acetic acid and its two derivatives using emulsion method at room temperature and characterized by different techniques such as infrared, \(^1\)H and \(^13\)C NMR, UV-visible spectroscopy, SEM, wide angle X-ray diffractagrams and conductivity measurements. These polyaniline salts have the desirable property of high solubility for processibility in solvents such as DMF, DMSO and a mixture of CHCl\(_3\) and acetone and they exhibit fairly good conductivity of ~ \(3.0 \times 10^{-3}\) S cm\(^{-1}\). The variations in solubility, conductivity and morphology with the protonating strength of the dopants are examined.

IPC Code: Int. Cl.\(^7\) C08F2/22

Among electrically conducting organic polymers, which have attracted much attention, polyaniline (PANI) is one of the most widely studied material. A wide range of technological applications have been associated with polyaniline, for example, in electrostatic dissipation, anticorrosion coatings, in various optoelectronic devices\(^1\) and as an antistatic material\(^2\). However, the poor processability of polyaniline, which is true of the other conducting polymers as well, has limited its applications. Synthesis of polyaniline salts with various dopants is of fundamental importance in exploiting its solubility in common organic solvents for improved processibility. Various types of acids have been used in the protonation of polyaniline. These are introduced either directly during the polymerization of aniline or they are reacted a priori with polyaniline base. Inorganic acids\(^3,6\) such as hydrochloric and sulphuric acids are the most common. Organic acids\(^7,11\) such as camphorsulfonic and dodecylbenzenesulfonic acids have also been used for protonation. Carboxylic acids like formic\(^12\), maleic\(^13\) and tartaric acids\(^14\) have also been employed in limited number of studies. However, these polyaniline salts possess limited solubility.

Weak acids with higher \(pK_a\) values offer additional information with respect to the doping property of PANI. Phenoxy acetic acids present a combination of hydrogen bonding and phenyl stacking\(^10,11\) for the protonation of PANI. In this paper, we describe the synthesis of protonated polyaniline with phenoxy acetic acid (PAA) and two of its derivatives by the emulsion polymerization of aniline using ammonium persulphate as the oxidant. In recent years emulsion polymerization has come to the forefront\(^15,16\). The emulsion process has the distinct advantage that the polymerization is carried out in a heterogeneous system in which the reaction takes place in a large number of loci dispersed in a continuous external phase. Thermal and viscosity problems are much less significant here than in bulk polymerization. Polymers of high molecular weight can be obtained. The PAA dopants are introduced during the polymerization of aniline by emulsion procedure using ammonium persulphate as the oxidising agent. The polyaniline salts synthesized have been subjected to spectral, electrical and morphological studies.

Materials and Methods

Reagent grade aniline and phenol were used after the usual purification. Chloroacetic acid, sodium hydroxide and sodium lauryl sulphate were used as received.

Synthesis

Phenoxy acetic acid and its two derivatives were synthesized following the literature method\(^17\). A mixture of phenol (or 2-chlorophenol or 3,4-dimethylphenol) (1.0 mol) and sodium hydroxide solution (1.0 mol) was taken in a round bottomed flask. An aqueous solution of monochloroacetic acid (1.0 mol) was added to this mixture. Sufficient
amount of water to dissolve the sodium salt of phenol was added. The reaction mixture was heated gently on a boiling water bath for about 4 h. After cooling, it was acidified with hydrochloric acid. The precipitated phenoxycetic acid was filtered, dried and recrystallized from hot water.

A typical procedure for the preparation of the polyaniline salt is as follows.

Phenoxyacetic acid (or its derivative) was dissolved in 100 ml of chloroform. The emulsifier, i.e. sodium lauryl sulfate (2.25 g) in 50 ml of distilled water was added to it under constant stirring to obtain a milky white emulsion. Aniline (2.6 ml) was then added to it followed by the dropwise addition of an aqueous solution of 0.1 M ammonium persulphate as the oxidant (5.7 g) when a greenish colouration develops indicating the onset of polymerization. The reaction mixture was continuously stirred for about 24 h at room temperature. The organic phase was then separated and washed with distilled water. It was added to 600 ml of acetone to break the emulsion and precipitate out the polyaniline salt. After 10 h, the precipitate was filtered, washed with water followed by acetone and dried under vacuum. The polyaniline salt synthesized was converted into the free emeraldine base. For this purpose, 1 g of the polyaniline salt was finely powdered and suspended in 250 ml of 0.05 M NaOH solution and stirred for 12 h. The mixture was filtered, washed with 250 ml of 0.05 M NaOH solution and dried in vacuum for 36 h.

Physical measurements

The UV-visible absorption spectra were recorded using a Hitachi U-3400 spectrophotometer using DMSO as the solvent. FT-IR spectra were recorded using a Bruker-IFS 55 spectrometer by the KBr pellet technique. The 1H and 13C NMR spectra were obtained in DMSO-d_6 with a Bruker AMX 400 MHz spectrometer using tetramethylsilane as the internal reference. Conductivity measurements were made at room temperature using the four-probe technique on pressed pellets obtained by subjecting the powder to a pressure of 50 kN. Thermogravimetric (TGA) measurements were performed using a Mettler Toledo Star System at a heating rate of 20°C min$^{-1}$ under nitrogen atmosphere. Scanning electron microscopic (SEM) measurements were carried out with a JEOL JSM 5600L scanning electron microscope. Wide angle X-ray diffractograms were recorded for the powdered materials using a Siemens D5005 X-ray powder diffractometer.

The solubility of the polymer was evaluated by the following method: About 10 mg of the powdered sample was added to 1 ml of the solvent at 25°C and dispersed thoroughly. After the mixture was stirred for 2 h and the procedure was repeated by adding 0.5 mL of the solvent each time till the compound dissolves.

Results and Discussion

PAA and its two derivatives form salts with PANI and yield conducting green protonated PANI salts. The yield of the polyaniline salt calculated on the basis of the aniline monomer taken varies from 20-43% as seen from Table 1. The variation in the yield of the PANI PAA derivatives can be understood in terms of the steroelectronic effects of the substituents on the phenyl ring of the PAA. The CI substituent is electron withdrawing while the CH$_3$ group is electron donating. The two CH$_3$ groups in the DMPAA may offer increased steric hindrance than Cl in CIPAA.

Polyaniline has been categorized as an intractable material which is neither soluble nor fusible under normal conditions. The interest in polyaniline as a most suitable conducting polymer has stemmed several strategies to induce solubility and processability in polyaniline. One method is to utilize appropriate organic acids to modify the processability of polyaniline as noted in the introduction. The organic acids influence the solubility of polyaniline through their dipole properties and their tendency to form hydrogen bonds. The solubility of the PANI salts was determined in different solvents. It was found that the PANI salts are completely soluble in polar solvents such as DMF, DMSO and a mixture of CHCl$_3$ and acetone. They are partially soluble in CHCl$_3$. One of the aims of the present study of the synthesis of the PANI salt with PAA and its derivatives was to enhance its processability in solution. It is satisfying to note that PANI DMPAA salt shows the best solubility. It is soluble to the extent of 10 g/lit in DMSO as well as in CHCl$_3$ and acetone mixture (1:3 by volume). The other salts are comparatively somewhat less soluble (3-5 g/lit).

Absorption spectra

Table 1 shows the absorption spectral data of the polyaniline salt as well as its base in DMSO. The spectrum of the PANI base exhibits only two bands at 330 and 636 nm, whereas the polyaniline salts show four absorption bands at 330-335, 427-435, 614-636 and 914-960 nm (see Table 1). The 335 nm
Table 1—Yield, absorption bands and conductivity data for the polyaniline salts and the base

<table>
<thead>
<tr>
<th>Sample</th>
<th>Yield(%)</th>
<th>Absorption maxima (nm)</th>
<th>Conductivity (S cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANI-PAA</td>
<td>43</td>
<td>330</td>
<td>636</td>
</tr>
<tr>
<td>PANI-Cl PAA</td>
<td>25</td>
<td>335</td>
<td>435</td>
</tr>
<tr>
<td>PANI-DMPAA</td>
<td>20</td>
<td>333</td>
<td>427</td>
</tr>
<tr>
<td>PANI-base</td>
<td>60</td>
<td>330</td>
<td>-</td>
</tr>
</tbody>
</table>

![Graph](image)

Fig. 1—FT-IR spectra of (a) PANI-base and (b) PANI-DMPAA.

The absorption band of the base/salt could be assigned to the π-π* transition of the benzenoid ring and the ~635 nm band has been identified as due to the charge transfer transition (π-π*) from the HOMO of the benzenoid ring (non-bonded nitrogen lone pair) to the LUMO (π*) of the quinoid ring. The bands near 435 nm in the spectra of the salts are assigned as due to the polaron transitions. Polaron transitions are found only in the spectrum of the polyaniline salt. Interestingly the longest wavelength band is found at significantly higher wavelengths than that observed in other PANI salts. This suggests the formation of polyaniline of higher molecular weight.

A correlation between the conductivity of the polyaniline salt and the intensity of the longest wavelength band was noticed. The 930 nm band is due to the -NH₂⁺ species which is generated on protonation of polyaniline and its intensity is a measure of doping. Continued oxidation of the polymer would lead to the conversion of the -NH₂⁺ to NH⁺ group, consequently resulting in a decrease in the intensity of the 930 nm band and also a decrease in the conductivity of the polyaniline salts.

FTIR spectroscopy

The FT-IR spectrum of PANI base is compared with that of PANI-DMPAA in Fig. 1. A more direct evidence for the protonation of polyaniline is obtained from the FT-IR spectra of PANI-PAA salts. The spectra of PAA and its two derivatives show a strong broad band at 3630-3660 cm⁻¹ due to OH stretching and a strong doublet at 1750, 1720 cm⁻¹, which corresponds to C=O stretching vibration. The -OH stretching frequency decreases to about 3400-3420 cm⁻¹ and the C=O stretching band by 10 to 15 cm⁻¹ showing clearly hydrogen bonding type of interactions between PANI and PAA compounds. The NH stretching in PANI salts is observed at 3240-3260 cm⁻¹ showing a small dependence on doping anion.

The chief bands at 1580 and 1500 cm⁻¹ in the polyaniline salts correspond to the stretching vibrations of the quinonoid and benzenoid rings respectively. The latter band is more intense than the former. The ratio of the infrared band intensity at ~1500 and 1590 cm⁻¹ is directly related to the oxidation state of the polymer. In the case of PANI-PAA salts more benzenoid units exist in the polymer than the quinonoid units i.e. PANI is less oxidized. Consistent with this finding the band characteristic of the PANI base is found at 1375 cm⁻¹ in all the FT-IR spectra demonstrating that doping is partial. The band arising from C-N stretching adjacent to the quinonoid ring is found at 1420 cm⁻¹, while the band due to C-N stretching of the secondary aromatic amine occurs near 1296 cm⁻¹. In the 1010-1170 cm⁻¹ region, the aromatic C-H inplane bending modes are observed.

The characteristic out of plane C-H deformations of 1,4-disubstituted benzene ring of PANI are found at 800 and 860 cm⁻¹. The infrared band at 1308 cm⁻¹ is strengthened on protonation and the intensity of the band characteristic of the conducting protonated form at about 1246 cm⁻¹ increases. The latter band is attributed as due to C-N⁺ stretching mode in the polaron structure. A band corresponding to the bending mode of -NH+= occurs at 1128 cm⁻¹ on protonation. It indicates the presence of positive charges in the chain and the distribution of the dihedral angle between the quinonoid and benzenoid rings.

NMR spectra

Figure 2 shows the ¹H NMR spectrum of PANI-DMPAA salt. The ¹H and ¹³C chemical shifts of the
Table 2—\(^1\)H and \(^13\)C chemical shifts in ppm for PANI salts*

<table>
<thead>
<tr>
<th>Assignment</th>
<th>PANI-PAA</th>
<th>PANI-CI PAA</th>
<th>PANI-DMPAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1)H NMR signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinoid ring</td>
<td>7.29</td>
<td>7.30</td>
<td>7.26</td>
</tr>
<tr>
<td>Benzenoid ring</td>
<td>6.9</td>
<td>6.94</td>
<td>6.6</td>
</tr>
<tr>
<td>-NH</td>
<td>(6.6-7.33)</td>
<td>(6.9,7.0,7.25,7.4)</td>
<td>(6.66, 6.73)</td>
</tr>
<tr>
<td>-O-CH(2)</td>
<td>3.7</td>
<td>3.9</td>
<td>3.6</td>
</tr>
<tr>
<td>-CH(3)</td>
<td>(--)</td>
<td>(--)</td>
<td>(--)</td>
</tr>
<tr>
<td>(^13)C NMR signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-CH (Quinoid ring)</td>
<td>126.2, 119.7</td>
<td>128.0, 121.87</td>
<td>130.03</td>
</tr>
<tr>
<td>-CH (Benzenoid ring)</td>
<td>(124, 130)</td>
<td>(114,124,127,130,153)</td>
<td>(116,130,138,155)</td>
</tr>
<tr>
<td>-O-CH(2)</td>
<td>67.0</td>
<td>66.00</td>
<td>69.82</td>
</tr>
<tr>
<td>-COOH</td>
<td>172.75</td>
<td>172.09</td>
<td>175.52</td>
</tr>
<tr>
<td>-CH(3)</td>
<td>(171.22)</td>
<td></td>
<td>(172.75)</td>
</tr>
</tbody>
</table>

*Values in the parenthesis are the corresponding chemical shifts of the dopants

Fig. 2—\(^1\)H NMR spectra of PANI-CI PAA.

PANI-salts are listed in Table 2. The spectrum of the PANI PAA salt exhibits a sharp singlet at \(\delta\) 4.7 ppm, which is characteristic of the dopant arising from the -OCH\(_2\)_ group. The signals due to the aromatic protons of the quinonoid ring (doped state) and the benzenoid protons of PANI in the region of 6.6-7.3 ppm overlaps with the aromatic protons of the dopant and are not much useful. The downfield shift of the signal corresponding to the aromatic and N-H protons is attributed to the conversion of some of the -NH groups into -NH\(_3^+\) on protonation of PANI by PAA. The characteristic methyl resonance peak of DMPAA is observed as two sharp intense singlets at \(\delta\) 2.13 and 2.18 ppm. The results demonstrate the occurrence of PAA and its derivatives in the PANI salts.

As in the \(^1\)H NMR, there is extensive overlapping between the \(^13\)C signals of PANI and PAA compounds in the spectra of PANI salts in the aromatic region, rendering it difficult to draw unambiguous conclusions. However, the \(^13\)C resonance signals of the OCH\(_2\)_ group of PAA and its derivatives shift by 3-5 ppm in the spectra of the PANI salts. Similarly the carboxylate carbon of PAA and its derivatives also shifts by 2-3 ppm in the PANI salts. The methyl resonance peak of DMPAA shifts by 4 to 5 ppm in the PANI-DMPAA salts. These shifts clearly demonstrate the chemical interaction between PANI and PAA and its derivatives.

Conductivity

The protonation is well documented by the conductivity measurements. The conductivity of PANI base is less than \(10^{-8}\) S cm\(^{-1}\). It increases after protonation by phenoxy acetic acids to \(1.5 \times 10^{-3}\) to \(3.7 \times 10^{-3}\) S cm\(^{-1}\) (Table 1) i.e. by over six orders of magnitude. This is a level of conductivity that may be of interest for some applications. Interestingly, PANI CIPAA salt exhibits slightly higher conductivity than PANI-PAA salt. The electron withdrawing nature of the chlorine substituent renders the -COOH proton more acidic thus facilitating the protonation. This interpretation seems to get support from the slightly lower conductivity observed for PANI DMPAA, where the weakly electron donating methyl groups render the carboxylic hydrogen less acidic.
Table 3—Position of Bragg’s peaks for polyaniline salts (2θ(d(A)))

<table>
<thead>
<tr>
<th>Sample</th>
<th>20 (d(Å))</th>
<th>11.72</th>
<th>12.46</th>
<th>20.00</th>
<th>24.76</th>
<th>25.3</th>
<th>19.68</th>
<th>18.6</th>
<th>14.38</th>
<th>8.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANI-PAA</td>
<td>25.3</td>
<td>(3.51)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANI-Cl PAA</td>
<td>27.86</td>
<td>(3.19)</td>
<td>26.78</td>
<td>25.00</td>
<td>24.02</td>
<td>(3.32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PANI-DMPAA</td>
<td>26.06</td>
<td>(3.55)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The value in parenthesis is the Bragg’s distance d in Å.

Thermogravimetric analysis

The thermogravimetry (TGA) and differential thermal analysis (DTA) of the samples were recorded from 20 to 600°C at a heating rate of 20°C min⁻¹ in static air. The thermogram shows a three step weight loss behaviour. The weight loss in the first step up to about 100-140°C is due to the loss of moisture. In the second step (up to 300-350°C), the weight loss is due to the loss of the dopant. A slow and gradual weight loss profile was noticed for PANI salts after 400°C, due to their decomposition. The thermograms showed the PANI CIPAA salt to be thermally more stable than PANI-HCl salt.

The DTA and DTG curves of the PANI-PAA salts show an endothermic peak around 100-120°C and two exothermic peaks, a broad peak due to the loss of dopant (200-250°C) and another around 450-500°C due to the complete decomposition. As noted from the DTA studies, the polyaniline base seems to be slightly more stable than the salt.

Morphology and X-ray diffraction

The scanning electron micrographs reveal a granular morphology for the PANI-PAA salt, which is similar to that reported for the PANI salts with other dopants. Figure 3 shows the SEM picture of PANI CIPAA salt. It reveals crystalline as well as amorphous morphology in contrast to the PANI base. The positions of the Bragg’s peaks along with their d spacing obtained from the wide angle X-ray powder diffractograms are given in Table 3. The PANI base and its salts exhibit their strongest peak at 2θ = 9-10°, their second strongest peak at 23-26°, a medium intensity peak at 19-22° and a weak peak at 14-16°. The number of sharp peaks in the diffractogram is the highest in the PANI CIPAA salt showing its more crystalline nature and is the least in PANI-DMPAA salt. The X-ray powder diffractograms of the PANI salts are consistent with the results of the SEM studies.

Conclusions

Protonated electrically conducting polyaniline salts with phenoxy acetic acid and its two derivatives are highly soluble in solvents such as DMF, DMSO and a mixture of CHCl₃ and acetone and hence possess the desirable property for processability. The emulsion method of oxidative polymerization of aniline gives moderate yields of the product. These polyaniline salts possess moderate conductivity. The proton interaction is dominating but the nature of the anion too plays an important role in establishing the redox state of the polymer.

Acknowledgement

The authors gratefully acknowledge the financial support from the CSIR, New Delhi, under No.01(1658)/00/EMR-II. The authors sincerely thank the Sophisticated Instrument Facility of the Institute for their help in recording the NMR spectra.
References