Electronic Supplementary Data

DNA cleavage activity and cytotoxicity of mononuclear and trinuclear Cu(II) complexes containing 1H-pyrazole-3,5-dicarboxylic acid as ligand

Ashish Kumar Srivastavaa, Niraj Kumaria, Rais Ahmad Khanb, Richa Rai, Geeta Raic, Sartaj Tabassumb & Lallan Mishraa *

aDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
Email: lmishrabhu@yahoo.co.in
bDepartment of Chemistry, Aligarh Muslim University, Aligarh, India
cMolecular and Human Genetics, Banaras Hindu University, Varanasi, India

No. Contents Pg No.
1. Synthetic method and characterization of complexes (1) and (2). 2
2. Fig. S1 – UV-visible spectrum complexes (1) and (2) in DMSO:Water (v/v, 1:9) (10−4 M). 3
3. Fig. S2 – (a) Molecular structure of (1) (30% probability ellipsoid), (b) Molecular structure of (2) (30% probability ellipsoid). [hydrogen atoms are omitted for clarity]. 4
4. Fig. S3 – A perspective view of hydrogen bonding interactions in crystal lattice of (1). 5
5. Fig. S4 – Effect of increasing amount of complex (1) (●) and (2) (■) on the relative viscosities (η/η0) of CT–DNA in Tris–HCl buffer (pH 7.2). 5
6. Fig. S5 – Agarose gel electrophoresis showing DNA cleavage patterns of pBR322 plasmid DNA (300 ng) in presence of complex (1). [Lane 1: DNA; Lane 2: 20 μM (1) + DNA; Lane 3: 40 μM (1) + DNA; Lane 4: 60 μM (1) + DNA; Lane 5: 80 μM (1) + DNA; Lane 6: 100 μM (1) + DNA. (b) Mean densitometric values of SC and NC DNA bands form the three gel repeats]. 6
7. Fig. S6 – Agarose gel electrophoresis showing DNA cleavage patterns of pBR322 plasmid DNA (300 ng) in presence of complex (2). [Lane 1: DNA; Lane 2: 10 μM (2) + DNA; Lane 3: 20 μM (2) + DNA; Lane 4: 30 μM (2) + DNA; Lane 5: 40 μM (2) + DNA; Lane 6: 50 μM (2) + DNA (b) Mean densitometric values of SC and NC DNA bands form the three gel repeats]. 6
8. Fig. S7 – Cytotoxicity assay of complexes (1) and (2). [(a) CaSki cervical cell lines; (b) HL-60 cell lines]. 7
9. Fig. S8 – Variation of cell viability with concentration of the complex (2) against CaSki, HL-60, THP-1 human monocytic cell lines. 7
10. Fig. S9 – Micrographs showing Hoechst staining of CaSki cell lines (a-f). [a. and g. Hoechst staining (Blue), b. and h. complex (2) (Green), green fluorescence shows the presence of complex (2) inside the cells after treatment (arrow head shows more penetration of the compound in apoptotic cells as compared to the cells not showing signs of apoptosis represented by dashed arrow); c. untreated Caski cells; i. untreated HL-60 cells, d-f. Caski cells treated with complex (2); d. and e. cell blebbing without micronucleus externalization, f. and i. fragmented micronucleation in caski cells and HL-60 cells respectively. All pictures were captured at 60X oil objective (d-h and i pictures were enlarged)]. 8
11. Table. S1 – Parameters of weak interactions. 8
Synthetic method and characterization of complexes (1) and (2).

Synthesis of complex \([\text{Cu}(\text{H}_2\text{pdc})_2(\text{H}_2\text{O})_2]\) 1

A solution of \(\text{H}_3\text{pdc}\) (0.184g, 1.00 mmol) in water and methanol containing NaOH (0.040 g, 1.00 mmol) was added to a solution of \(\text{Cu(NO}_3)_2\cdot3\text{H}_2\text{O}\) (0.242 g, 1.00 mmol) in water (5.0 mL). The reaction mixture was then heated at 90°C for 12 h. Rectangular shaped blue crystals were isolated. Yield: 54%, M.P. 220°C, elemental analysis calculated for \(\text{C}_{10}\text{H}_{14}\text{N}_4\text{O}_{12}\text{Cu}\) (%): C, 26.94; H, 3.17; N, 12.57. Found (%): C, 27.09; H, 3.25; N, 12.18. IR (KBr): \(\nu_{\text{max}}/\text{cm}^{-1}\) 3436 (OH, H\(_2\)O), 3086 (CH, Ph), 1704 (COO\(^{-}\) uncoordinated), 1636 \(\nu_{\text{as}}\)(COO\(^{-}\) coordinated), 1461 \(\nu_{\text{s}}\)(COO\(^{-}\) coordinated). UV-vis. absorptions: \(\lambda_{\text{max}}\) (DMSO, 10\(^{-4}\)M/nm \(\varepsilon\times10^{-4} / \text{M}^{-1} \text{cm}^{-1}\)) 239 (1.29) and 652 (0.009).

Synthesis of complex \([\text{Cu}_3(\text{pdc})_2(\text{bpy})_2(\text{H}_2\text{O})_2]\) 2

A solution of \([\text{Cu(bpy)}(\text{NO}_3)_2]\)· 2\(\text{H}_2\text{O}\) (0.365g, 1.00 mmol) in water (5.0 mL) was added to an alkaline solution of \(\text{H}_3\text{pdc}\) (0.087g, 0.5 mmol) in methanol:water (1:4 ml). It was then heated at 90°C for 3 h. Cuboidal crystals of green colour were isolated and washed with hexane. Crystals were soluble in hot DMSO. Yield: 43%, M.P. >230 °C, elemental analysis calculated for \(\text{C}_{30}\text{H}_{26}\text{N}_8\text{O}_{12}\text{Cu}_3\) (%): C, 40.89; H, 2.97; N, 12.72. Found (%): C, 41.00; H, 3.07; N, 12.31. R (KBr): \(\nu_{\text{max}}/\text{cm}^{-1}\) 3440 (OH, H\(_2\)O), 3033 (CH, Ph), 1649 \(\nu_{\text{as}}\)(COO\(^{-}\) uncoordinated), 1603 (2, 2’ bpy), 1429 \(\nu_{\text{s}}\)(COO\(^{-}\) coordinated). UV-vis. absorptions: \(\lambda_{\text{max}}\) (DMSO, 10\(^{-5}\)M/nm \(\varepsilon\times10^{-4} / \text{M}^{-1} \text{cm}^{-1}\)) 241 (2.9), 301 (2.3) and 666 (0.019). Complex 2 was reported earlier, by the reaction of \(\text{Cu(ClO}_4)_2\cdot6\text{H}_2\text{O}\), \(\text{H}_3\text{pdc}\), 2,2’-bpy, \(\text{Et}_3\text{N}\) in stainless steel reactor with Teflon liner at 160°C [1]. This method clearly follows difficult route and raises the possibility of purification and explosion too as perchlorate salts are generally explosive on heating. Therefore present synthetic route was found easy and also it avoid of explosion if any during the reaction.

Synthesis of complex \([\text{Zn}(\text{H}_2\text{pdc})_2(\text{H}_2\text{O})_2]\) 3

The reaction condition for the synthesis of complex 3 was similar to that used for the synthesis of complex 1 except that \(\text{Zn(NO}_3)_2\cdot6\text{H}_2\text{O}\) was used in place of \(\text{Cu(NO}_3)_2\cdot6\text{H}_2\text{O}\). Hexagonal tiny white crystals were isolated and washed with diethyl ether. Crystals were found insoluble in common organic solvents. Yield: 54%, M.P. 220 °C, elemental analysis calculated for \(\text{C}_{10}\text{H}_{14}\text{N}_4\text{O}_{12}\text{Zn}\) (%): C, 40.44; H, 2.05; N, 15.73. Found (%): C, 41.24; H, 2.17; N, 16.21. UV-vis. absorptions: \(\lambda_{\text{max}}\) (solid state)/nm 301. IR (KBr): \(\nu_{\text{max}}/\text{cm}^{-1}\) 3436 (OH, H\(_2\)O), 3077 (CH, Ph), 1701 (CO), 1633 \(\nu_{\text{as}}\)(COO\(^{-}\) coordinated), 1465 \(\nu_{\text{s}}\)(COO\(^{-}\) coordinated).

Reference
Fig. S1 – UV-visible spectrum complexes (1) and (2) in DMSO:Water (v/v, 1:9) (10–4 M).
Fig. S2 – (a) Molecular structure of (1) (30% probability ellipsoid), (b) Molecular structure of (2) (30% probability ellipsoid). [hydrogen atoms are omitted for clarity].
Fig. S3 – A perspective view of hydrogen bonding interactions in crystal lattice of (1).

Fig. S4 – Effect of increasing amount of complex (1) (●) and (2) (■) on the relative viscosities (η/η_0) of CT–DNA in Tris–HCl buffer (pH 7.2).
Fig. S5 – Agarose gel electrophoresis showing DNA cleavage patterns of pBR322 plasmid DNA (300 ng) in presence of complex (1). [Lane 1: DNA; Lane 2: 20 μM (1) + DNA; Lane 3: 40 μM (1) + DNA; Lane 4: 60 μM (1) + DNA; Lane 5: 80 μM (1) + DNA; Lane 6: 100 μM (1) + DNA. (b) Mean densitometric values of SC and NC DNA bands form the three gel repeats].

Fig. S6 – Agarose gel electrophoresis showing DNA cleavage patterns of pBR322 plasmid DNA (300 ng) in presence of complex (2). [Lane 1: DNA; Lane 2: 10 μM (2) + DNA; Lane 3: 20 μM (2) + DNA; Lane 4: 30 μM (2) + DNA; Lane 5: 40 μM (2) + DNA; Lane 6: 50 μM (2) + DNA (b) Mean densitometric values of SC and NC DNA bands form the three gel repeats].
Fig. S7 – Cytotoxicity assay of complexes (1) and (2). [(a) CaSki cervical cell lines; (b) HL-60 cell lines].

Fig. S8 – Variation of cell viability with concentration of the complex (2) against CaSki, HL-60, THP-1 human monocytic cell lines.
Fig. S9 – Micrographs showing Hoechst staining of CaSki cell lines (a-f) and HL-60 cell lines (g-j). [a. and g. Hoechst staining (Blue), b. and h. complex (2) (Green), green flourescence shows the presence of complex (2) inside the cells after treatment (arrow head shows more penetration of the compound in apoptotic cells as compared to the cells not showing signs of apoptosis represented by dashed arrow); c. untreated Caski cells; i. untreated HL-60 cells, d-f. Caski cells treated with complex (2); d. and e. cell blebbing without micronucleus externalization, f. and i. fragmented micronucleation in caski cells and HL-60 cells respectively. All pictures were captured at 60X oil objective (d-h and i pictures were enlarged)].

Table S1 – Parameters of weak interactions

<table>
<thead>
<tr>
<th>D-H···A</th>
<th>D-H (Å)</th>
<th>H···A (Å)</th>
<th>D···A (Å)</th>
<th>DHA (°)</th>
<th>symmetry code</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(4)-H(1)</td>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(5)-H(14)</td>
<td>1.10</td>
<td>1.96</td>
<td>2.747(6)</td>
<td>125</td>
<td>½ - x, 1 - y, -1/2 + z</td>
</tr>
<tr>
<td>N(5)-H(14)</td>
<td>1.10</td>
<td>2.24</td>
<td>2.796(6)</td>
<td>109</td>
<td>-x, ½ + y, 1/2 - z</td>
</tr>
<tr>
<td>O(21)-H(21)</td>
<td>0.70(7)</td>
<td>2.09(7)</td>
<td>2.787(5)</td>
<td>173(5)</td>
<td>-x, ½ + y, 3/2 - z</td>
</tr>
<tr>
<td>O(21)-H(22)</td>
<td>0.76(7)</td>
<td>2.07(7)</td>
<td>2.772(5)</td>
<td>156(7)</td>
<td>1 + x, y, z</td>
</tr>
</tbody>
</table>