Facile synthesis of 2-arylbenzo[b]furans through unusual acid catalysed 1,2-elimination

Ashok K Jha,1 Pushkar C Sharma,2 Prakas R Maulik,2 Umesh Yadav2 & K Hajela*2

1Medicinal Chemistry Division & 2Molecular and Structural Biology Division,
Central Drug Research Institute, Lucknow 226 001, India
hajelak@yahoo.com, root@cscdri.res.nic.in

Received 10 April 2003; accepted (revised) 16 January 2004

2-Arylbenzo[b]furans have been synthesized in good to excellent yields through unusual acid catalysed 1,2-elimination of 2-aryl-2-aryl-3-hydroxybenzo[b]furans isolated as an intermediate for the first time. Their structure has been confirmed by X-ray crystallography.

IPC: Int.Cl. C 07 D 307/78

Benzofuran ring occurs widely and is the pivotal structure element of many natural and synthetic substances which show pharmacological properties. Many 2 or 3-aryl substituted benzofurans have found utility as antihypertensive, antiinflammatory, antifungal and antihyperlipidemic agents. Some 2, 3-diaarylbenzofurans and fused benzofuran ring derivatives have also been shown to possess antifeedant and mixed estrogen agonist and antagonist activities. In our pursuit for a simple and facile synthesis of 2, 3-diaryl-2H-1-benzopyrans, a novel class of potent antiestrogens through McMurry coupling reaction, we have found a highly efficient route to 2-arylbenzo[b]furans from readily available ortho hydroxylated aromatic carbonyl compounds and α-bromo-deoxybenzoinzs in good to excellent yields. This route offers very mild reaction conditions from readily accessible reagents.

The condensation of salicylaldehyde with substituted or unsubstituted α-bromo-deoxybenzoins in presence of NaH in DMF or NaOH in THF/HMPA resulted in the precipitation of an off white crystalline compound in 60-70% yield presumed to be the expected ether, 2-[2'-formylphenoxyl]-1,2-diarylethanone A. However, when the compound was subjected to McMurry coupling reaction it formed 2-aryl-2-aryl-3-hydroxybenzo[b]furan D in >80% yield instead of the desired 2, 3-diarylbenzopyran B (Scheme 1). The spectral data of the isolated intermediate and the formation of 2-arylbenzo[b]furan D in good yields under acidic conditions pointed towards a 2,3-disubstituted benzofuran derivative in which the aryl and aroyl groups could be present on C-2 and C-3 carbons and a hydroxyl group on C-3 carbon. The final structure and position of aryl and aroyl substituents were confirmed by X-ray analysis as 2-aryl-2-aryl-3-hydroxybenzo[b]furan C as shown in the ORTEP diagram (Figure 1).

A detailed literature survey does not mention formation of any intermediate of this type in any of the syntheses reported for 2-arylbenzo[b]furans.

Similar reactivity was also observed with 2-hydroxy aromatic ketones and α-bromo-deoxybenzoins forming the expected 2-aryl-2-aryl-3-alkyl-3-hydroxybenzo[b]furan E which on refluxing with dil. hydrochloric acid or any Lewis acid such as TiCl4 or SnCl4 formed the 2-aryl-3-alkylbenzo[b]furan F in >80% yield. However, if an aldehyde or a ketone with a protected carbonyl group was subjected to the same condensation, it initially formed the ether G which underwent acid catalysed deprotection, aldolisation and elimination to give 2-arylbenzo[b]furan D. From the ORTEP diagram it can be seen that the hydroxyl and aroyl groups are antitans to each other. Under acidic conditions, protonation at the 3-hydroxyl group

Figure 1—ORTEP diagram of 2-aryl-2-(4-methoxy phenyl)-3-hydroxybenzo[b]furan
results in the removal of a water molecule generating a carbocation, which possibly coordinates with the aryl group forming a cyclic transition complex. Addition of water results in the facile elimination of the aryl group as a carboxylate to give 2-arylbenzo[b]furans (Scheme II).

Experimental Section

General. Melting points were taken in open glass capillary and are uncorrected. IR spectra were taken on Shimadzu FTIR using KBr disk. Proton NMR spectra were recorded on a dpx200 and dnx300 spectrometer and 13C NMR spectra were recorded on a dnx300 spectrometer using CDCl$_3$ as solvent and trimethylsilane as the internal standard. El-MS were recorded on JEOL (Japan)/SX-102 and FAB mass were recorded on JEOL (Japan)/D-300 instrument. Microanalyses were performed on DF200 Carlo Erba instrument. X-ray crystallographic data were collected on Bruker P4 diffractometer. Dry solvents were prepared using standard methods.

2-[4-Methoxybenzoyl]-2-phenyl-3-hydroxy-benzo[b]furan C. 2-Hydroxybenzaldehyde (0.122 g, 1 mmole) was added to a stirred solution of NaOH (0.044 g, 1.1 mmole) and THF : HMPA (1:1, 4 mL) and the mixture was allowed to reflux for 30 min. Thereafter, 2-bromo-1-[4-methoxyphenyl]-2-phenyl ethanone (0.336 g, 1.1 mmole) in dry THF (2 mL) was added dropwise and the solution refluxed for further 8 hr. On completion of the reaction (monitored
by T.L.C.) it was cooled and quenched with water. It was extracted with solvent ether (3 × 50 mL) and washed with KOH (5% aqueous solution, 3 × 10 mL), water (2 × 5 mL) and dried (NaSO4). Excess of solvent was removed under vacuum. The residual oil was triturated with ethyl acetate and cooled to give a crystalline solid C. It was filtered and recrystallised from benzene/hexane, m.p. 164°C; yield 70% (0.242 g); IR (KBr): 3452 (OH, νC=O), 1664 (CO) cm⁻¹; ¹H NMR (300 MHz, CDCl3): δ 1.38 (d, 1H, OH, J = 7.2 Hz, exchangeable with D2O shake), 3.80 (s, 3H, OCH3), 6.18 (d, 1H, vicinal to OH, J = 7.2 Hz), 6.98-7.56 (m, 9H, ArH) and 8.0 (d, 2H, J = 8.7 Hz); ¹³C NMR (75 MHz, CDCl3): δ 55.3, 75.7, 98.9, 110.4, 113.2, 122.0, 125.6, 126.3, 127.2, 127.7, 130.5, 131.5, 133.3, 134.9, 157.8, 163.6 and 195.2 (CO); MS (FAB): m/z 347 (M+), 329 (M-17), 194, 135 (100%); Anal Calcd for C22H18O4: C, 76.30; H, 5.20%. Found: C, 76.71; H, 5.28%.

X-ray analysis: Crystal data: C₂₂H₁₈O₄, MW = 346.36, monoclinic, space group P2₁/n, a = 7.730(1), b = 16.997(2), c = 13.244(2) Å; β = 100.56(1)°, V = 1710.6(4) Å³, Z = 4, Dm = 1.345 g cm⁻³, μ = 0.092 mm⁻¹ (Mo-Kα, λ = 0.71073), F(000) = 728.0, T = 293(2) K, crystal size 0.28 × 0.23 × 0.13 mm, 4534 reflections measured, 3333 unique, (Rint = 0.036). Unit cell determination and intensity data were collected on a Bruker P4 diffractometer. Structure solution by direct methods, full-matrix least-squares refinement on F², anisotropic displacement parameters, riding hydrogen atoms, no absorption correction at convergence (Δρmax = 0.000) gave R = 0.0742 on F values of 1713 reflections with I > 2σ(I), S = 1.030 for all data and 237 parameters. Final difference map between Fobs and Fcalc shows a density peak of 0.35 e Å⁻³.

2-[4-Methoxybenzoyl]-2-phenyl-3-hydroxy-3-methylbenzo[b]furan E. This compound was prepared following the same procedure as described for C using 2- hydroxycacetophenone and 2-bromo-1-[4-methoxyphenyl]-2-phenyl ethanone. After work-up, the residue was purified by column chromatography on silica gel using ethyl acetate : hexane (1:20) as the eluting system to give the product E, m.p. 145°C; yield 65%; IR (KBr): 3344 (OH), 1645 (CO cm⁻¹); ¹H NMR (200 MHz, CDCl3): δ 1.22 (s, 3H, CH₃), 3.80 (s, 3H, OCH₃), 5.33 (s, 1H, OH, exchangeable with D₂O), 6.80 (d, 2H, ArH, J = 8.7 Hz), 6.98-7.56 (m, 9H, ArH) and 8.0 (d, 2H, ArH, J = 8.7 Hz); EI-MS m/z 390 (M⁺), 135 (100%).

2-[2-(1,3-Dioxolan-2-yl)-phenoxy]-1-[4-methoxyphenyl]-2-phenyl ethanone G. This compound was prepared using 1,3-dioxolan-2-yl phenol and 2-bromo-1-[4-methoxyphenyl]-2-phenyl ethanone following the procedure as described for C and E. The
crude residue obtained was purified by column chro-
matography on silica gel using ethyl acetate : hexane
(1:20) as the eluting system to give pure compound
G, m.p. 136 - 38°C; yield 55%; IR (KBr): 1674 (CO),
1076 (C-O) cm⁻¹; ¹H NMR (CDCl₃): δ 3.63 (s, 3H,
OCH₃), 3.85 - 3.95 (m, 4H, -CH₂-CH₂-), 6.08 and 6.10
(s, s, 1H each), 6.69 (d, 2H, ArH, J = 8.7 Hz), 6.79 -
7.44 (m, 9H, ArH), 7.95 (d, 2H, ArH, J = 8.7 Hz); EI-
MS: m/z 390 (M⁺), 135 (100%).

General procedure for the synthesis of 2-
arylbenzo[b]furans D or F from C, E or G using
mineral acid (10% aq. HCl) or Lewis acids (SnCl₄,
TiCl₄). Compounds C, E or G (1 mmole) were di-
solved in dioxan (5 mL), aq. HCl (10%, 5 mL) was
added and the mixture refluxed for 10 hr. The reaction
mixture was quenched with water, extracted with sol-
vent ether (3 x 10 mL) and washed with water (3 x 5
mL). It was dried (Na₂SO₄) and after removal of the
excess solvent, the residue was recrystallised from
hexane to give compounds D (m.p. 122°C, lit.
121°C)¹² or F, yield 80%. All the spectral data corre-
sponded to the authentic 2-phenylbenzo[b]furan¹².

Acknowledgement
Ashok K Jha and Pushkar C Sharma are thankful to
CSIR, New Delhi for the award of senior and junior
research fellowships respectively. The authors are
thankful to Dr Raja Roy, Scientist, NMR Lab, SAIF,
CDRI for his helpful discussions.

References
1 Abstract was presented in the International Symposium on
Current Trends in Drug Discovery Research CTDDR-2001,
11-15 Feb, 2001, CDRI, Lucknow, India.
3 Chawla H P S, Grover P K, Anand N, Kamboj V P &
4 Crenshaw R R, Jeffries T A, Lake G M, Chemoy L C &
5 Durrani N, Jain R, Saced A, Dikshit D K, Durrani S &
6 Grese T A, Pennigton L D, Sluka J P, Adrian M D,
Cole H W, Fusion T R, Magee D E, Phillips D L, Rowley E R,
Shailer P K, Short L L, Venugopal M, Yang N N, Sato M,
7 Saced A, Sharma A P, Durrani N, Jain R, Durrani S &
8 Hajela K, Kapoor K K & Kapil R S, Bioorg Med Chem., 3,
1995, 1417.
10 Hajela K, Pandey J, Dwivedi A, Dhar J D, Sarkhel S,
Maulik P R & Velumurugan D, Bioorg Med Chem, 7, 1999,
2083.