Crystallographic characterization of divalent organosamarium compound
\((C_5H_5)_2\text{Sm(THF)}_2\)\(^*\)

S Jagannatha Swamy
Department of Chemistry, Kakatiya University,
Warangal 506 009

Received 20 November 2001; revised 8 April 2002

The single pot reaction between SmX\(_2\) (X = Cl, I) and 'BuLi in THF at -40°C, followed by the addition of C\(_6\)H\(_6\)/Na\(^+\) results in a dark red solution. Leasing the concentrated reaction mixture at -25°C for two days in a deep freezer results in the formation of the crystals of the compound, \((C_5H_5)_2\text{Sm(THF)}_2\). The compound is insoluble in any solvent and it has been characterized by conventional methods. The crystals are monoclinic with space group \(C2/c\), and \(a = 13.416(1)\, \text{Å}, b = 9.644(1)\, \text{Å}, c = 14.129(2)\, \text{Å}, \beta = 109.873(9)\, ^\circ\) and \(z = 4\) for \(\rho_{	ext{calc}} = 1.64 \, \text{g cm}^{-3}\). Least squares refinement on the basis of 1804 observed reflections has led to a final R value of 0.037 and \(R_w = 0.054\).

The organometallic chemistry of the most reactive divalent lanthanide metal ion, Sm(II), with \(\text{Sm}^{II}/\text{Sm}^{III}\) couple of -1.15 V\(^1\), has been extensively studied\(^2\) since 1981. The organometallic compounds of the other two chemically accessible divalent lanthanides Eu(II) and Yb(II) were familiar since 1964 and 1966 respectively, because of the solubility of \((C_5H_5)_2\text{Eu}, (C_5H_5)_2\text{Yb}\) and other monosubstituted cyclopentadienyl derivatives\(^3\). A number of methods have been developed subsequently for the preparation of Eu(II) and Yb(II) organometallic compounds\(^4,5\). The Sm(II) analogue \((C_5H_5)_2\text{Sm(THF)}_2\) was first obtained by the reduction of \((C_5H_5)_2\text{Sm}\) with potassium and naphthalene in THF\(^6\). The organometallic chemistry of Sm(II) gained momentum with the preparation of the soluble complex with permethylated cyclopentadiene \((C_5\text{Me}_5)\), first by using metal vapourization technique\(^7\) and then by solution method\(^8\). Subsequently, Evans et al.\(^9\) have obtained the unsolvated arené soluble complex, \((C_5\text{Me}_5)_2\text{Sm}\).

As part of our interest in divalent organolanthanides, we have investigated the solubility of bis-(pentamethylcyclopentadienyl)samarium(II) in a solvent other than tetrahydrofuran, i.e., dimethoxyethane(DME)\(^10\). Further, we have reported a new soluble Sm(II) organometallic compound with a stabilizing and solubilizing ring bridged dicyclopentadienide\(^11\). In continuation of our efforts to obtain heteroleptic organolanthanides, we accidentally obtained the title compound in crystalline form. The synthetic strategy, structural parameters of \((C_5H_5)_2\text{Sm(THF)}_2\) (I) and a comparative account of divalent organolanthanide complexes are described in this note.

Experimental

The complex described in this note and other reagents used are extremely air and moisture sensitive. Therefore, all operations were performed under rigorously purified argon by Schlenk and vacuum-line techniques. Pre-dried THF was distilled from sodium bezophenone ketyl immediately before use. THF-d\(_6\) was dried by refluxing over sodium metal for several hours. Anhydrous SmCl\(_2\) was prepared by reducing SmCl\(_3\) in THF with Li and naphthalene\(^12\), and the solution of SmL\(_2\) in THF was prepared by the reaction between excess metal (Auer-Remy) and 1,2-diiodoethane\(^13\). Elemental analyses were carried out with a Perkin-Elmer CHN-analyzer 2400. Metal analysis involved complexometric titration using dithizone\(^14\). Infrared spectra were recorded in paraffin mulls between CsI plates on a Perkin-Elmer 560B (200-4000 cm\(^{-1}\)) spectrometer. \(^{1}H\) NMR spectra were recorded for samples in sealed 5 mm tubes on a Brucker WP80 SY instrument.

Reactions

To a suspension of 1.1 g (5 mmol) of red SmCl\(_2\) in 30 ml THF or to a 30 ml of solution of SmL\(_2\)(THF)\(_2\) (2.74 g, 5 mmol), 2.94 ml of 1.7M solution of 'BuLi (3.2 g, 5 mmol) in pentane was added slowly at -40°C. A violet solution was obtained. Then at the same temperature 0.79 g (5 mmol) of NaC\(_5\text{Me}_5\), containing an adventitious amount of NaC\(_5\text{H}_5\), in 20 ml of THF was added in one experiment. In another experiment a solution of 0.44 g (5 mmol) of NaC\(_5\text{H}_5\) in 20 ml of THF was added slowly. In both the cases the colour of the solutions changed to dark red. The reaction mixture was stirred for another 3 hours, concentrated to 20 ml by removing the solvents under vacuum and then filtered through a fine frit. The

Dedicated to Dr. P. Lingamah, Professor of Chemistry, Kakatiya University on his 60\(^{th}\) Birthday and retirement from the service in November 2001.
concentrated solution was left in a deep freezer at about -25°C. Purple crystals were found after 2 days, which were filtered (0.26 g, 14%) and used for CHM analyses and recording IR spectra. Analytical results: Found (\%) - C, 50.42, H, 6.25, Sm, 35.13, calculated for C_{18}H_{26}O_{2}Sm (\%) - C, 50.9, H, 6.17, Sm, 35.4. IR (Nujol/polychlorofluoroethylene oil, cm\(^{-1}\)) 3080, 1475, 1347, 1308, 1263, 1070, 1008, 775, 740 assignable to \(\nu(C-H)\) and \(\delta(C-H)\) of Cp and 2980, 2880, 1375, 725 and 565 attributable to coordinated THF.

X-ray crystallography of (C\(_5\)H\(_5\))\(_2\)Sm(THF)\(_2\)

A single crystal measuring 0.49 \times 0.27 \times 0.23 mm was selected from the suspension taken in a device reported by Veith and Barninghausen\(^7\). It was fastened to a glass fiber with grease and placed in the cold nitrogen stream in the X-ray diffractometer, Enraf-Nonius CAD4.

The data were collected by the \(\omega\)-20 scan technique with Mo-K\(_\alpha\) radiation (\(\lambda\), 71.073 pm). The parameters are given in Table 1. The final lattice parameters were determined from least squares refinement of intensities in the limits 0 \(\leq h \leq 15, 0 \leq k \leq 11, -16 \leq l \leq 16); from 20 values of 25 computer centered reflections in the range of 1 \(\leq 2\theta \leq 53^\circ\), measured at 110 K. Initial investigation showed the crystal system to be monoclinic with space group Cc, and C2/c from the systematic absent reflections. The successive refinements confirm the C2/c space group. Three reflections were checked every hour and the maximum fluctuation was found to be -1.7%. The crystal orientation was checked after each 200 intensity measurements by scanning three orientation check reflections. In case of angular change greater than 0.1° an array of 25 reflections was re-centered. The intensities were corrected for Lorentz and polarization effects. No absorption correction was made (\(\mu = 32.37\) cm\(^{-1}\)).

The positional parameters of the samarium atom were calculated from the Patterson map. A difference Fourier map based on the metal atom phase revealed
the positions of all non-hydrogen atoms. Least squares refinement with isotropic thermal parameters led to $R = \Sigma ||F_o|-|F_c||/\Sigma |F_o| = 0.037$. The hydrogen atom positions were calculated ($d_C-H = 0.95$ pm) and added to the structure model with constant temperature factor ($U_{iso-H} = 0.08 \text{ Å}^2$). After all atoms in the structure have been positioned, the empirical absorption corrections were made (minimum and maximum correction factors were 0.666 and 1.736). The final difference Fourier showed a maximum electron density of 1.05 e/Å3 near the heavy metal.

All calculations were performed with the programme SHELX-76. Atomic scattering factors for Sm were taken from ref. 29, and anomalous dispersion terms from ref. 30 (The data have been deposited at the Fachinformationzentrum Energie, Physik, Mathematik GmbH, D-7514, number CSD 53204). Additional data pertaining to the crystal structure determination are summarized in Table 1. Selected interatomic distances and angles are listed in Table 2.

Results and discussion

Namy et al., have reported the synthetic applications of the insoluble (C$_6$H$_5$)$_2$Sm(THF)$_2$ in Barbier type reactions between alkyl halides and aldehydes/ketones. The reactions of the soluble complex (C$_6$Me$_3$)$_2$Sm(THF)$_2$ were investigated extensively which resulted in interesting products, (C$_6$Me$_3$)$_2$Sm$^+$, (C$_6$Me$_3$)$_2$SmI$_2$(N$_2$)$^-$(1) and [[(C$_6$Me$_3$)$_2$Sm(THF)] [Co(CO)$_3$]]. Because of the insolubility of the complex, (C$_6$H$_5$)$_2$Sm(THF)$_2$, it was characterized by elemental analysis, magnetic susceptibility and IR spectral data only. Deacon et al. have obtained the soluble derivative of Sm(II) with cyclopentadienyl by reduction of (C$_6$H$_5$)$_2$Sm with potassium in presence of benzophenone in THF. They reported the DME soluble species as K$_2$[(C$_6$H$_5$)$_2$Sm]$_3$.

In one of our attempts to prepare heteroleptic Sm(II) and Yb(II) derivatives, containing a pentahapto ligand, C$_6$H$_5$/C$_6$Me$_3$ and an alkyl group, we observed the formation of compound, I in crystalline form. Earlier, we have reported the preparation of (C$_6$H$_5$)$_2$YbCl(THF)$_2$. The reaction of (C$_6$H$_5$)$_2$YbCl(THF)$_2$ with RLi did not give any characterizable product. Then we have tried another route for the preparation of the organolanthanides.

SmX$_2$ + BuLi \rightarrow 40°C THF \rightarrow 40°C NaC$_5$H$_5$ I + Y ... (1)

On addition of BuLi to the suspension of red SmI$_2$, a violet solution was obtained, which turned red on addition of NaC$_5$H$_5$ in THF. From the concentrated reaction mixture, after removal of alkali metal halides, red crystals were obtained which analyzed for the formula C$_6$H$_5$O$_2$Sm. The other substance Y could not be characterized. Further, the IR spectrum of the product was the same as reported for (C$_6$H$_5$)$_2$Sm(THF)$_2$. The formation of the compound was attributed to the presence of an adventitious quantity of NaC$_5$H$_5$ or BuLi, and the compound I was crystallized from the solution as its solubility is very low. Then similar reactions were repeated with NaC$_5$H$_5$. The same colour changes were observed. The solid obtained exhibited similar IR spectrum and analytical data were also identical. Then we have tried to obtain the 1H NMR spectrum of the complex as follows. A few drops of the reaction mixture was dried completely in a Schlenk flask to which an NMR tube was fused, and THF-d$_8$ was added to the flask. The solid dissolved completely. The solubility of the title compound in the present investigation may be attributed to the presence of a slight excess of BuLi and/or NaC$_5$H$_5$, which solubilize the Sm(II) complex by forming an ion pair as reported by Deacon et al.

The principal signals in the spectrum [δ, ppm] are 5.5 (C$_5$H$_5$), 3.5 and 1.6 (THF $H's$) and another signal at -18.6 was observed, which may be due to the Bu-protons (a satisfactory analysis could not be obtained for the species in the solution).

Molecular structure of (C$_6$H$_5$)$_2$Sm(THF)$_2$

The ORTEP diagram of the crystal structure of the complex (C$_6$H$_5$)$_2$Sm(THF)$_2$ is given in Fig. 1. The crystal data, atomic positional parameters, anisotropic
Table 3—Structural data of divalent organolanthanides, \((\text{C}_n\text{R}_3)_2\text{M.D}_n\) (D = donor molecules, \(n = 2\) or 1)

<table>
<thead>
<tr>
<th>Complex</th>
<th>Average M–C distance, Å</th>
<th>M–D distance, Å</th>
<th>Cp–M–Cp angle (deg)</th>
<th>D–M–D angle (deg)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{C}6\text{H}{5})_2\text{Yb(DME)})</td>
<td>2.72</td>
<td>2.45(3) O 2.50(3) O</td>
<td>129</td>
<td>67.2(9)</td>
<td>22</td>
</tr>
<tr>
<td>([\text{MeC}6\text{H}{5}]\text{Yb(THF)}) (\mu -\text{MeC}6\text{H}{5})</td>
<td>2.76, 2.87, 2.91</td>
<td>2.53(2) O</td>
<td>–</td>
<td>–</td>
<td>23</td>
</tr>
<tr>
<td>((\text{C}6\text{Me}{3})\text{Yb(NC}_4\text{H}_2))</td>
<td>2.74</td>
<td>2.586(7) N 2.544(6) N</td>
<td>136.3(3)</td>
<td>82.5(2)</td>
<td>24</td>
</tr>
<tr>
<td>([\text{C}8\text{H}{8}\text{CH}_3\text{H}_2\text{Yb(THF)}]_2)</td>
<td>2.706</td>
<td>2.42(1) O 2.41(1) O</td>
<td>127(1)</td>
<td>82.4(5)</td>
<td>14</td>
</tr>
<tr>
<td>((\text{C}6\text{Me}{3})\text{Eu})</td>
<td>2.79(1)</td>
<td>–</td>
<td>140.3</td>
<td>–</td>
<td>12</td>
</tr>
<tr>
<td>((\text{C}6\text{Me}{3})\text{Sm})</td>
<td>2.79</td>
<td>–</td>
<td>140.1</td>
<td>–</td>
<td>11.12</td>
</tr>
<tr>
<td>((\text{C}8\text{H}{8})\text{Sm(THF)}_2)</td>
<td>2.86</td>
<td>2.61(2) O 2.65(2) O</td>
<td>136.7</td>
<td>82.6(4)</td>
<td>2.10</td>
</tr>
<tr>
<td>([\text{C}6\text{Me}{3}]\text{Sm(μ-I)(THF)}_2)</td>
<td>2.81(2)</td>
<td>2.62(2) O 2.66(2) O</td>
<td>–</td>
<td>73.5(6)</td>
<td>10</td>
</tr>
<tr>
<td>((\text{C}6\text{Me}{3})\text{SmCl(DME),DME})</td>
<td>2.79</td>
<td>2.52(1) O 2.61(2) O</td>
<td>140.0</td>
<td>62.8(4)</td>
<td>13</td>
</tr>
<tr>
<td>((\text{C}8\text{H}{8})\text{Sm(THF)}_2) ([\text{C}6\text{Me}{3}]\text{Sm^*}][\text{I(N)}_2])</td>
<td>2.69(2)</td>
<td>2.407(4) O</td>
<td>129.8(1)</td>
<td>82.0(2)</td>
<td>5</td>
</tr>
<tr>
<td>((\text{C}6\text{Me}{3})\text{Sm^*}][\text{I(N)}_2])</td>
<td>2.73(2)</td>
<td>2.3 N 2.4 N</td>
<td>129.8(1)</td>
<td>82.0(2)</td>
<td>5</td>
</tr>
</tbody>
</table>

#(1–Sm–1), @ Sm in +3 oxidation state, $ Present work

The smallest (ring centroid)–Sm–(ring centroid) angle of 120° was reported for the Sm(III) complex in \((\text{C}_6\text{Me}_{3})\text{Sm}\). The observed angle in the compound I, 129.8(1)°, is the smallest angle observed to date for a Sm(II) complex. The angle in other pentamethylcyclopentadienyl complexes is in the range of 136.7°-140.1°. This smallest Cp–Sm–Cp angle indicates less steric interactions between the \(\text{C}_8\text{H}_{8}\) rings as compared to the \(\text{C}_6\text{Me}_{3}\) rings. The smallest (ring centroid)–Yb–(ring centroid) angle, 127(1)°, was found in the case of ring bridged complex \([\text{C}_8\text{H}_{8}\text{CH}_3\text{H}_2\text{Yb(THF)}]_2\). While in the case of an open Cp\(_2\) complex with a chelating solvent molecule (DME) the rings are slightly far apart, 129°, in \((\text{C}_8\text{H}_{8})\text{Yb(DME)}_2\). The O-Sm-O angle, 82.0(2)° is in the same order as observed in similar complexes with monodentate THF\(_2\) and pyridine\(_2\) coordinated to Sm(II) and Yb(II).

The average Sm–C(ring) distance in I, 2.69 Å, is the shortest observed to date between ring carbon atoms and Sm(II) [2.79-2.86 Å], and is close to that reported in cyclopentadienyl\(_2\) and ring bridged...
Acknowledgement

The work was carried out in the laboratories of Prof. Dr. H. Schumann in Technische Universität Berlin. The author thanks Prof. Dr. H. Schumann for providing facilities and also thankful to Prof. W. J. Evans, University of California, Irvine for his valuable suggestions during the preparation of the manuscript. Further, the senior fellowship of DAAD under re-invitation programme is acknowledged.

References