Selective CO₂ uptake in a bi-pillared layer 3D metal-organic framework of Zn(II)

Ritesh Haldara, Raghu Pradeep Narayana, & Tapas Kumar Majia, b, *
Molecular Materials Laboratory, a New Chemistry Unit and b Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064, India

Email: tmaji@jncasr.ac.in

Received 12 July 2012; revised & accepted 18 August 2012

A new two-fold interpenetrated 3D bi-pillared framework, {[Zn(1,4-bdc)(azbpy)]·DMF}ₙ (1), where 1,4-bdc = 1,4-benzenedicarboxylic acid, azbpy = 4,4′-azobipyridine and DMF = N,N-dimethyl formamide, has been synthesized from a mixed ligand system and characterized by single crystal as well as powder X-ray diffraction and thermogravimetric analysis. The metal center, Zn(II), having a trigonal bi-pyramidal geometry, is connected to the three different 1,4-bdc linkers in the equatorial positions while the axial positions are occupied by the two different 4,4′-azbpy pillars. The framework contains one-dimensional rectangular shaped channels along the c axis and the channel surfaces are decorated with the nitrogen atoms of –N=N– functional group from azbpy ligand. The desolvated framework has a specific surface area of ~ 40 m² g⁻¹ and shows excellent selective uptake of CO₂ at 195 K among other small gases like Ar, N₂ and H₂. (1) also adsorbs acetonitrile and benzene solvent vapors at 298 K.

Keywords: Metal organic frameworks, Selective CO₂ adsorption, Polar pore surface, Solvent vapour adsorption

Rapid extension of industrialization in modern era has caused a severe impact on the level of atmospheric CO₂ concentration. The current global climate change is partly associated with the increasing CO₂ concentration in the air. Carbon capture and sequestration from the flue gases is one approach to reduce atmospheric CO₂ concentration. Current conventional CO₂ capture technique involving chemisorption of CO₂ in amine solution is not an energy viable process. An alternative approach is reversible physisorption of CO₂ in porous materials. Among the various available porous materials, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are most promising for the mentioned applications due to their regular and designable channel structure which is composed of strong and flexible coordination bonds.1-5 The last couple of decades have witnessed extraordinary growth in the field of MOFs and many fascinating properties and applications have been unveiled including gas storage and separation,6-9 heterogeneous catalysis,10-12 magnetism,13-15 energy transfer16-24 and drug delivery.25-26 The recognition and selective adsorption of gas molecules by MOFs are of paramount importance in concern to industry and environment. Earlier known conventional porous materials like porous carbon,27 and zeolites28 have not been able to reach a satisfactory level of gas storage capacity and selectivity. Rather, new generation MOFs or PCPs are more capable to achieve the set goal. Here the basic building units are organic and inorganic moieties, and the framework structures can be easily modified to tune the adsorption properties in terms of storage capacity and selectivity.29-31 Pore surface modified with the functional groups like -NH₂, -OH or hetero atoms (N, F, O) are promising candidates for CO₂ storage due to the specific Lewis acid-base interaction with the CO₂ molecule having large quadrupole moment.32-34 Additionally, the direct visualization of CO₂ molecules inside the pores have made the mechanistic pathways more clear and acceptable.35-36 Over the last few years different strategies has been adopted to make such materials and different functional groups have been incorporated in the pore surfaces to approach physically viable application; i.e., high amount of CO₂ uptake at low pressure and at ambient temperature.

In past few years, we have also come up with different newly designed frameworks for selective capture of CO₂.37-39 In continuation of this effort, herein we present a bi-pillared layer framework, {[Zn(1,4-bdc)(azbpy)]·DMF}ₙ (1), where 1,4-bdc =
1,4-benzene dicarboxylic acid, azbpy = 4,4’-azo-bipyridine and DMF = N,N-dimethyl formamide, having polar –N=N- functional groups on the pore surface. Bulk synthesis methodology and thermal stability of the framework have been studied. At 195 K, the desolvated framework shows excellent CO₂ selectivity among other gases like N₂, Ar and H₂. Furthermore, (I) also shows satisfactory uptake of acetonitrile and benzene vapors at 298 K.

Materials and Methods

All the reagents employed were commercially available and used as provided without further purification. Zinc nitrate [Zn(NO₃)₂·6H₂O] was obtained from Spectrochem and 1,4-bdc was obtained from Sigma Aldrich Co. 4,4’- Azobipyridine was synthesized following the reported literature procedure.

Elemental analysis was carried out using a Thermo Fischer Flash 2000 elemental analyzer. Infrared spectra were recorded on a Bruker IFS 66v/S FTIR spectrophotometer using KBr pellets in the region 4000-400 cm⁻¹. Powder X-ray diffraction (XRD) pattern of the product were recorded by using Cu-Kα radiation (Bruker D8 Discover; 40 kV, 30 mA). Thermogravimetric analysis (TGA) was carried out (Mettler Toledo) in nitrogen atmosphere (flow rate = 3 L min⁻¹). The program SAINT was used for integration of diffraction profiles. Absorption correction was made with SADABS program. The structure was solved by SIR 92 and refined by full matrix least square method using SHELXL-97. All the hydrogen atoms were fixed by HFIX and placed in ideal positions. Potential solvent accessible area or void space was calculated using the PLATON multipurpose crystallographic software.

All crystallographic and structure refinement data of (I) is summarized in Table 1. All calculations were carried out using SHELXL 97, PLATON and WinGX system, ver 1.70.01.

Adsorption studies

The adsorption isotherms of N₂ (77 K and 195 K), CO₂ (195 K), Ar (195 K) and H₂ (195 K) for compound (I) were measured by using a Quantachrome Quadrasorb SI analyzer. The adsorbent sample (100–150 mg) was placed in the sample chamber (of about 17.5 mL) maintained at T = 433 ± 0.03 K under a 0.1 Pa vacuum for about 6 h prior to measurement of the isotherm. Helium gas at a certain pressure was introduced in the gas chamber and allowed to diffuse into the sample chamber by opening the valve. The change in pressure allowed an accurate determination of the volume of the total gas phase. The amount of gas adsorbed was calculated

Table 1—Crystal data and structure refinement parameters of compound (I)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emp. formula</td>
<td>C₂₀H₁₉ZnN₂O₅Zn</td>
</tr>
<tr>
<td>Mol. wt.</td>
<td>485.79</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n (No. 14)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>11.5888(5)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>15.4052(6)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>12.2398(5)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>2029.30(15)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>T (K)</td>
<td>293</td>
</tr>
<tr>
<td>λ (Mo-Kα)</td>
<td>0.71073</td>
</tr>
<tr>
<td>Dₐ (g cm⁻³)</td>
<td>1.590</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>1.256</td>
</tr>
<tr>
<td>θmax (deg.)</td>
<td>32.0</td>
</tr>
<tr>
<td>Total data</td>
<td>23767</td>
</tr>
<tr>
<td>Unique reflection</td>
<td>6735</td>
</tr>
<tr>
<td>R₁</td>
<td>0.069</td>
</tr>
<tr>
<td>[I > 2σ(I)]</td>
<td>4239</td>
</tr>
<tr>
<td>R吸附</td>
<td>0.0926</td>
</tr>
<tr>
<td>R_wb</td>
<td>0.2767</td>
</tr>
<tr>
<td>GOF</td>
<td>1.03</td>
</tr>
</tbody>
</table>

X-ray crystallography

Single crystal X-ray structural data of (I) was collected on a Bruker Smart-CCD diffractometer equipped with a normal focus, 2.4 kW sealed tube X-ray source with graphite monochromated Mo-Kα radiation (λ = 0.71073 Å) operating at 50 kV and 30 mA. The program SAINT was used for integration of diffraction profiles. Absorption correction was made with SADABS program. The structure was solved by SIR 92 and refined by full matrix least square method using SHELXL-97. All the hydrogen atoms were fixed by HFIX and placed in ideal positions. Potential solvent accessible area or void space was calculated using the PLATON multipurpose crystallographic software.

Synthesis of [{Zn(1,4-bdc)(azbpy)}·DMF]ₙ (I)

A ligand solution in DMF (25 mL) was prepared by mixing of 1,4-bdc (1 mmol, 0.166 g) and azbpy (0.5 mmol, 0.092 g). A methanolic solution of zinc nitrate (1 mmol, 0.298 g) was prepared and layered on top of the ligand solution in a diffusion tube and left undisturbed. The orange colored block shaped crystals sticking on the sides of the tube were obtained after a couple of weeks. A good quality single crystal was separated and coated with paraffin oil and used for single crystal X-ray diffraction studies. Yield ~ 68 %. Anal. (%): Calcd. for C₂₀H₁₉ZnN₂O₅: C, 50.59; H, 4.01; N, 14.75. Found: C, 50.21; H, 5.01; N, 7.49; Observed: C, 50.59; H, 4.01; N, 14.75. Found: C, 51.11; H, 5.41; N, 7.41%. FT-IR (KBr pellet, cm⁻¹): 3456, 1593, 1555, 1378, 1410, 1214, 1028, 995.
readily from pressure difference \((P_{\text{cal}} - P_e)\), where \(P_{\text{cal}}\) is the calculated pressure with no guest adsorption and \(P_e\) is the observed equilibrium pressure. High pressure \(\text{CO}_2\) adsorption measurement at 298 K was carried out on a fully computer controlled volumetric high pressure instrument (Belsorp-HP, BEL Japan). \(\text{CO}_2\) gas used for the measurement was of 99.999 % purity. For the measurements, approximately 300 mg of sample was taken in a stainless-steel sample holder and degassed at 433 K for a period of 12 h under 0.1 Pa vacuum. Dead volume of the sample cell was measured with He gas of 99.999 % purity. Non-ideal correction for \(\text{CO}_2\) gas was made by applying virial coefficients at 298 K.

The adsorption of different solvents like benzene \((\text{C}_6\text{H}_6)\) and acetonitrile \((\text{CH}_3\text{CN})\) at 298 K was measured in the vapor state by using Belsorp-aqua-3 analyzer. Prior to measurements, the sample was treated at 433 K for about 10 h under vacuum. The different solvent molecules used to generate the vapor were degassed fully by repeated evacuation. Dead volume was measured with helium gas. The adsorbate was placed into the sample tube and the change of the pressure was monitored. The degree of adsorption was determined by the decrease in pressure at the equilibrium state. All operations were computer controlled and automatic.

Results and Discussion

Crystal structure of \([[\text{Zn}(1,4\text{-bdc})(\text{azbpy})]\cdot\text{DMF}]_n(1)\)

Compound \((1)\) crystallizes in monoclinic \(P_2_1/\text{n}\) space group. X-ray structure determination shows a 3D coordination framework of Zn(II) bridged by the 1,4-bdc and 4,4’-azbpy linkers. Each Zn(II) is connected to the three different oxygen atoms from the three different 1,4-bdc linkers in the equatorial positions and the axial positions are occupied by the two nitrogen atoms \((\text{N1, N2})\) from the two different 4,4’-azbpy pillars (Fig. 1). Therefore, each Zn(II) is in trigonal bi-pyramidal geometry with \(\text{ZnO}_3\text{N}_2\) chromospheres. Zn1-O and Zn1-N bond distances are in the range of \(2.026(3) - 2.048(3) \text{ Å}\) and \(2.165(4) - 2.189(4) \text{ Å}\), respectively. The distortion from the perfect TBP geometry is reflected in the cisoid angles (Table 2). Two 1,4-bdc connect two Zn(II) centers in a syn-syn fashion forming \(\text{Zn}_2(\text{CO}_2)_2\) SBU and this binuclear core is connected by another two 1,4-bdc by monodentate carboxylate oxygen atoms forming a perfectly 2D planar \([\text{Zn}_2(1,4\text{-bdc})_2]_n\) sheet lying in the crystallographic \(bc\) plane (Fig. 2a). Each 2D sheet is further pillared by the 4,4’-azbpy forming a 3D pillared layer framework (Fig. 2b). It is worth mentioning that the two Zn(II) centers of the binuclear core in the 2D sheet are connected by the 4,4’-azbpy forming bi-pillared layer-type framework. These nets are again two-fold interpenetrated reducing the available void space in the framework. However, along the crystallographic \(b\) axis the framework shows rectangular shaped channels \(4.7 (2.21 \text{ Å × 4.15 Å})\), which are occupied by guest DMF molecules and there is no additional opening along \(c\) and \(a\) axis (Fig. 3). Topological analysis by TOPOS 4.046 suggests formation of a \((2, 3, 5)\)-connected net.

Table 2—Selected bond lengths (Å) and angles (°) for \((1)\)

<table>
<thead>
<tr>
<th>Bond lengths</th>
<th>Value (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn1-O1</td>
<td>2.004(5)</td>
</tr>
<tr>
<td>Zn1-O2</td>
<td>2.566(6)</td>
</tr>
<tr>
<td>Zn1-O3</td>
<td>2.004(5)</td>
</tr>
<tr>
<td>Zn1-O4</td>
<td>2.035(6)</td>
</tr>
<tr>
<td>Zn1-N1</td>
<td>2.209(4)</td>
</tr>
<tr>
<td>Zn1-N4_a</td>
<td>2.194(4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond angles</th>
<th>Value (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1-Zn1-O2</td>
<td>52.35(17)</td>
</tr>
<tr>
<td>O1-Zn1-O4</td>
<td>137.18(19)</td>
</tr>
<tr>
<td>O1-Zn1-N1</td>
<td>89.66(16)</td>
</tr>
<tr>
<td>O2-Zn1-N1</td>
<td>85.27(17)</td>
</tr>
<tr>
<td>O2-Zn1-N4_a</td>
<td>94.38(15)</td>
</tr>
<tr>
<td>O3-Zn1-N1</td>
<td>91.11(17)</td>
</tr>
<tr>
<td>O4-Zn1-N1</td>
<td>88.02(16)</td>
</tr>
<tr>
<td>N1-Zn1-N4_a</td>
<td>175.34(12)</td>
</tr>
</tbody>
</table>
with Schl"{a}fli symbol \{4.8^2\}{4.8^8.12}\{8\} (Fig. 4). Removal of guest molecules creates a void space of \(~24\%\) \((\sim 492 \text{ Å}^3)\) of the total cell volume as calculated by PLATON. The distances between Zn(II)...Zn(II) centers connected by 1,4-bdc and azbpy linkers are 11.084 Å and 13.375 Å, respectively.

Thermal stability

TG analysis of compound 1 (Fig. 5) carried out under nitrogen atmosphere shows a weight loss of 25 \% (calc. wt. loss \(~24.9\%\)) in the range 303 – 448 K, corresponding to one DMF guest molecule. The

![Fig. 2](image1.png)

Fig. 2—(a) 2D sheet of compound (1) along \(bc\) plane, (b) 3D bi-pillared layer structure along \(b\) direction, and, (c) rectangular channels along \(b\) direction.

![Fig. 3](image2.png)

Fig. 3—View of surface added pores along different directions. [(a) along \(b\) axis;(b) along \(c\) axis; (c) along \(a\) axis].

![Fig. 4](image3.png)

Fig. 4—(a) 2, 3, 5-Connected net of compound (1), and, (b) view of interpenetrated nets.
dehydrated framework, \{Zn(1,4-bdc)(azbpy)\}_n (I′) is stable up to \(\sim 573\) K. Upon further heating, compound (I) decomposed to an unidentified product. After removal of guest solvent molecules from (I), there was appearance of some new peaks at 2\(\Theta\) = 11.95° and 15.045° and shifting of the peak at 2\(\Theta\) = 25.615°, indicating structural change (Fig. 6). Removal of solvent molecules creates a void space, and hence, motion of the interpenetrated nets is the most probable reason of such a structural change.

Selective CO\(_2\) adsorption

Encouraged by high thermal stability and available void space of the compound (I) after removal of guest solvent molecules, we carried out the adsorption studies with different gases and solvent vapours. At 77 K, desolvated (I) (i.e., I′) showed a very small uptake of N\(_2\) (kinetic diameter \(\sim 3.64\) Å\(^4\)) with type-II profile. The corresponding BET surface area of of I′ was \(\sim 40\) m\(^2\)/g (Fig. 7a). The one-dimensional channel system in the framework and the comparable pore size to the kinetic diameter of N\(_2\) result in high diffusion barrier of N\(_2\) at 77 K. However, surprisingly we observed a low pressure uptake of CO\(_2\) with typical type–I profile, indicating the microporous nature of the framework. The framework uptakes \(~102\) mL/g at \(P/P_0\) \(\sim 1\) which corresponds to 20 wt% of CO\(_2\) storage capacity. The desorption path does not follow the adsorption path completely and shows a small hysteresis. At 195 K, compound (I′) exhibits negligible uptake of H\(_2\), Ar and N\(_2\) (Fig. 7b) suggesting high CO\(_2\) selectivity in the framework. Such selectivity can be attributed to the specific host-guest interaction between CO\(_2\) and framework as the
former has high quadrupole moment and the latter has polar nature of the pore surface. The channel apertures are decorated with –N=N- groups (from 4,4'-azbpy) and Zn$_2$(COO)$_2$ SBU and these moieties act as efficient adsorption sites to interact with CO$_2$. High interaction between pore surface and adsorbent is realized by high heat of adsorption, ~32.1 kJ/mol, calculated using DR equation.50 Importantly, at 298 K, (1') can adsorb ~ 9 wt% of CO$_2$ at 30 bar pressure with a typical type-I profile (Fig. 8). It has been observed that MOFs synthesized from ligands having pendant heteroatom centers or polar functional groups can create polar pore surface and this eases the higher CO$_2$ uptake. The recent works reported by our group show that presence of heteroatom centers (N) and the different functional groups in the linker can modulate the CO$_2$ uptake significantly.37-39 Though CO$_2$ uptake is mostly a cooperative phenomenon, strong interaction with the pore surface induces strong binding, and hence, high heat of adsorption can be realized. In some instances we observed that though the pore size is not enough (smaller than the kinetic diameter of CO$_2$, 3.3 Å), CO$_2$ can diffuse through the pores because of the interaction with the host framework based on structural transformation.59 These cases are not common and are observed for CO$_2$ adsorption only. It is the high quadrupole moment of the CO$_2$ that leads to such a kind of dynamic behaviour in the framework.

To prove further the polar nature of the pore surface, we have studied the solvent vapour adsorption of benzene and acetonitrile at 298 K. Benzene solvent vapour adsorption profile shows a typical type-I curve and the saturation amount is 40 mL at P/P_0 ~ 0.9, which corresponds to ~ 0.75 benzene molecules per formula (Fig. 9). A slightly different adsorption profile was obtained with acetonitrile vapour. A steep uptake was observed at the low pressure region. Beyond P/P_0 ~ 0.32, the uptake amount of acetonitrile increased gradually with any further increase pressure, to finally 91 mL/g at P/P_0 0.91 corresponding to ~ 1.7 molecules per formula (Fig. 9). The hysteretic sorption profile as observed by the non-coincidence of the desorption profile with the adsorption profile, unlike benzene sorption profile, and non-release of all the adsorbed molecules (~1 acetonitrile per formula) indicates strong host-guest interaction between pore surface of (1) and acetonitrile. This result further corroborates the highly polar nature of the compound (1).

Conclusions

In conclusion, we have synthesized a new two-fold interpenetrated bi-pillared layer framework, $\{[\text{Zn}(1,4\text{-bdc})(\text{azbpy})]\cdot\text{DMF}\}_n$ (1) from a mixed ligand system of 1,4-bdc and azbpy. The desolvated framework (1') is thermally stable, which can be corroborated to the rigid oxo-bridged Zn$_2$(COO)$_2$ unit and interpenetration of the framework. At 195 K, (1') shows excellent selectivity for CO$_2$ gas among other gases like N$_2$, H$_2$ and Ar. The selectivity can be attributed to the strong interaction between the polar pore surface of the framework and CO$_2$ molecules. The polarity of the framework is further evidenced by solvent vapour studies. Our results demonstrate that by modifying the functional groups of the organic...
linkers, it is possible to design and synthesize CO$_2$
selective porous MOFs, which may have potential
application in CO$_2$ sequestration.

Supplementary Data
Crystallographic data of compound (1) reported
herein have been deposited with the Cambridge
Crystallographic Data Centre under CCDC No.
884553. Copies of the data can be obtained free of
charge, on application to CCDC, 12 Union Road,
Cambridge, CB2 1 EZ, UK. (Fax: +44- (0) 1223-
336033; Email: deposit@ccdc.cam.ac.uk).

References
2. Kitagawa S, Kitaura R & Noro S–I, Angew Chem, Int Edn,
7. Li H, Eddaoudi M, O’Keeffe M & Yaghi O M, Nature,
8. Kondo M, Okubo T, Asami A, Noro S I, Yoshitomi T,
Kitagawa S, Ishii T, Matsuzaka H & Seki K, Angew Chem,
1126.
23. Matthes P R, Höller C J, Mai M, Heck J, Sedlmaier S J,
Schmichen S, Feldmann C, Schnick W & Müller-Buschbaum K,
51 (2012) 4891.
Sugimoto M, Fukushima T, Inukai M & Kitagaw S, J Am
31. Colombo V, Montoro C, Maspero A, Palmisano G,
Masciocchi N, Galli S, Barea E & Navarro J A R, J Am
Chem Soc, 2012 10 1021/ja305267m.
32. Vaidhyananthan R, Tremonger S S, Dawson K W &
1222.
35. Vaidhyananthan, R, Tremonger S S, Shimizu G K H, Boyd P G,
38. Dey R, Haldar R, Maji T K & Ghoshal D, Cryst Growth Des,
11 (2011) 3905.
41. *SMART* (ver 5.628), *SAINT* (ver 6.45a), *XPREP*, *SHELXL*,
(Bruker AXS Inc Madison, Wisconsin, USA) 2004.
42. Sheldrick, G M, *Siemens Area Detector Absorption
Correction Program*, (University of Göttingen, Göttingen,
Germany) 1994.
43. Altomare A, Cascarano G, Giacovazzo C & Gualaradi A,
44. Sheldrick G M, *SHELXL-97, Program for Crystal Structure
Solution and Refinement*, (University of Göttingen, Göttingen,
Germany) 1997.
46. Farrugia L J, WinGX-A Windows Program for Crystal
47. The sizes of the channels were calculated considering the van
der Waals radii of the atoms.
49. Webster C E, Drago, R S & Zernier, M C, J Am Chem Soc,