Synthesis and characterization of some novel isoxazoles and 1,5-benzothiazepines bearing \(s\)-triazine nucleus

Anjani Solankee*, Kishor Kapadia, Pankit Solankee, Yogesh Prajapati, Hiral Patel & Sejal Solankee
Department of Chemistry, B.K.M. Science College, Valsad 396 001, India
E-mail: dranjani_solankee@yahoo.com

Received 9 May 2007; accepted (revised) 13 November 2007

The title compounds \(7a-d\) and \(8a-d\) have been prepared starting from chalcones \(6a-d\) having \(s\)-triazine nucleus. These chalcones \(6a-d\) on cyclisation with hydroxylamine hydrochloride in presence of alkali and 2-aminothiophenol in presence of a few drops of glacial acetic acid give isoxazoles \(7a-d\) and 1,5-benzothiazepines \(8a-d\) respectively. All the products have been characterized by elemental analysis, IR, \(^1\)H NMR and LCMS data.

Keywords: Isoxazoles, 1,5-benzothiazepines, glacial acetic acid, alkali, spectral data

The \(s\)-triazine nucleus containing chalcones and their derivatives have their own importance in heterocyclic chemistry due to their good biological activity. Chalcones have been studied extensively because of their wide range of biological activity. They are found to be effective as antiinflammatory\(^1\), antibacterial\(^2\), antiviral\(^3\), cardiovascular\(^4\) and anticancer\(^5\) agents. The diverse properties of chalcones have prompted their synthesis in order to study their biological and pharmacological activity. Five membered heterocycles like isoxazoles have found wide application as pharmaceutical and agrochemical agents. The synthesis of isoxazole derivatives has attracted considerable attention from organic and medicinal chemists due to their considerable bioactivity. Various biological applications have been reported for isoxazoles such as antitumor\(^6\), analgesic\(^7\), antimicrobial\(^8\) and chemotherapy\(^9\). 1,5-Benzothiazepines are gaining more attention due to their pharmacological significance. Compounds like Diltiazem\(^10\) and Clentiazem are well explored as effective cardiovascular drugs and found to contain 1,5-benzothiazepine nucleus. Some of the benzothiazepines have been claimed to exhibit antispasmodic\(^11\), neurolaptic\(^12\) and antidepressant\(^13\) activity.

Results and Discussion

The required precursor 2,4-bis-(phenylamino)-6-[4′-{3′-(substituted phenyl)-2′-propen-1′-yl]-phenylamino]-s-trazines \(6a-d\) were prepared from cyanuric chloride according to reported procedure\(^14,15\). The product \(7d\) was obtained by the treatment of \(6d\) with hydroxylamine hydrochloride in presence of alkali and well characterized from its spectral and analytical characterization data. Its IR spectra revealed the presence of \(-\text{C}=\text{N}\) group (isoxazole moiety) by exhibiting a strong absorption band at 1583 cm\(^{-1}\). The \(^1\)H NMR spectrum of \(7d\) in CDCl\(_3\) showed two singlets at \(\delta 3.88\) and at \(6.90\) due to \(\text{C}_4′′′\)-OCH\(_3\) and \(\text{C}_4′′\)-H of isoxazole ring protons. The complex multiplet at \(\delta 7.00-7.90\) is assigned for 21 aromatic protons. This was also supported by the mass spectrum of the compound which displayed the molecular ion peak at \(m/z\) 527. The C, H and N analysis of the compound \(7d\) was in good agreement with the proposed molecular formula C\(_{31}\)H\(_{25}\)N\(_7\)O\(_2\).

Further, the reaction of \(6d\) with 2-aminothiophenol in presence of a few drops of glacial acetic acid was carried out with an interest that the reaction would proceed as shown in **Scheme I** and at the end, this attempt yielded \(8a-d\). The IR spectrum of \(8d\) showed a strong absorption band at 1573 cm\(^{-1}\) due to \(-\text{C}=\text{N}\) group (benzothiazepine moiety). The \(^1\)H NMR spectrum exhibited the following resonance, doublet of doublet at 3.10 for \(\text{C}_3′′\)-Ha, doublet of doublet at 3.30 for \(\text{C}_3′′\)-Hb, singlet at 3.89 for \(\text{C}_4′′′\)-OCH\(_3\) and doublet of doublet at 5.00 for \(\text{C}_2′′\)-Hx proton. The aromatic cluster appeared at \(\delta 6.90-8.10\) with 25 aromatic protons. This was also supported by the electron ionization mass spectrum of the compound which displayed the molecular ion peak at \(m/z\) 621. The elemental analysis was also in good agreement with the molecular formula C\(_{37}\)H\(_{31}\)N\(_7\)OS.

Experimental Section

All the melting points were determined in an open capillary and are uncorrected. The reactions were monitored on TLC. The IR spectra were recorded in KBr pellets on a Perkin-Elmer 237 spectrometer. \(^1\)H NMR spectra on a Bruker Avance DPX 400 MHz spectrometer with CDCl\(_3\) as a solvent, using TMS as internal reference. Elemental analysis were carried out
on a Carlo Erba 1108 model analyzer. Mass spectra were recorded on a Hewlett Packard LCMS.

Preparation of 2-phenylamino-4,6-dichloro-s-triazine \(^\text{16}\), 3. Aniline (0.01 mole) was added slowly to cyanuric chloride (0.01 mole) in acetone (30 mL) with constant stirring over a period of 4 hr at 0 to 5°C. Then sodium carbonate (0.005 mole) dissolved in water (10 mL) was added dropwise to neutralize HCl evolved during the reaction. Finally the contents were poured into crushed ice. The solid separated out was filtered, washed with water, dried and purified by recrystallization from alcohol to give 3; m.p. 196°C, yield 86%.

Preparation of 2,4-bis-(phenylamino)-6-chloro-s-triazine, 4. Aniline (0.01 mole) was added slowly to compound 3 (0.01 mole) in acetone (35 mL) with constant stirring over a period of 6 hr at RT. Then sodium carbonate (0.005 mole) dissolved in water (10 mL) was added dropwise to neutralize HCl evolved during the reaction. Finally the contents were poured into crushed ice. The solid separated out was filtered, washed with water, dried and purified by recrystallization from alcohol to give 4; m.p. 179°C, yield 80%; IR (KBr): 772 (C-Cl), 1359 (C-N), 805 cm\(^{-1}\) (C-N, s-triazine); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.20 to 7.80 (m, 10 Ar-H and 2 NH).
Preparation of 2,4-bis-(phenylamino)-6-(4’-acetylphenylamino)-s-triazine, 5. 4-Aminoacetophenone (0.01 mole) and compound 4 (0.01 mole) were dissolved in acetone (40 mL). The reaction mixture was refluxed for 6 hr, cooled and poured into crushed ice. Then sodium carbonate (0.005 mole) dissolved in alcohol was added to neutralize HCl evolved during the reaction. The solid separated out was filtered, washed with water, dried and purified by recrystallization from alcohol to give 5; m.p. 218°C; yield 75%; IR (KBr): 1662 (C=O), 1355 (C-N), 805 cm⁻¹ (C-N, s-triazine); δ H NMR (CDCl₃): δ 3.75 (s, 3H, C₄′′-OCH₃), 8.19 (d, 1H, Ar-CH=). Found: C, 67.72; H, 4.14; N, 18.44.

2,4-Bis-(phenylamino)-6-[5′-(4″-nitrophenyl)-isoxazole-3″-yl]-phenylamino-s-triazine, 7b: Yield 57%; m.p. 134°C; IR (KBr): 1579 (C=N, isoxazole moiety), 805 cm⁻¹ (C-N, s-triazine); ¹H NMR (CDCl₃); δ 6.90 (s, 1H, C₄″′-CH of isoxazole moiety), 7.00 to 7.90 (m, 18 Ar-H and 3 NH); MS: m/z 542.

Preparation of 2,4-bis-(phenylamino)-6-[4′-(3″-methoxyphenyl)-isoxazole-3″-yl]-phenylamino-s-triazine, 6d. Compound 5 (0.01 mole) was dissolved in DMF (30 mL) and 4-methoxybenzaldehyde (0.01 mole) was added to it. Then a solution of KOH (5 mL of a 40% aqueous solution) was added to the reaction mixture with constant stirring at RT. After 24 hr the reaction mixture was poured into crushed ice and neutralized with HCl. The solid product separated out was filtered, washed with water, dried and purified by recrystallization from alcohol to give 6d; m.p. 174°C; yield 66%; IR (KBr): 1662 (C=O), 1355 (C-N), 805 cm⁻¹ (C-N, s-triazine); δ H NMR (CDCl₃); δ 3.75 (s, 3H, C₄′′-OCH₃), 7.00 to 7.90 (m, 18 Ar-H and 3 NH); MS: m/z 557.

General procedure for the preparation of 2,4-bis-(phenylamino)-6-[4′-(3″-methoxyphenyl)-isoxazole-3″-yl]-phenylamino-s-triazine, 8a-d. Compound 6a-d (0.01 mole) was dissolved in alcohol (25 mL) and hydroxylamine hydrochloride (0.01 mole) was added to it. Then a solution of KOH (5 mL of a 40% aqueous solution) was added to the reaction mixture and refluxed for 6 hr. The reaction mixture was then cooled, poured into crushed ice and the solid product separated out was filtered, washed with water, dried and purified by recrystallization from alcohol to give 7a-d.

2,4-Bis-(phenylamino)-6-[4′-(5″-(4″′-chlorophenyl)-isoxazole-3″-yl)-phenylamino]-s-triazine, 7a: Yield 61%; m.p. 130°C; IR (KBr): 1580 (C=N, isoxazole moiety), 807 cm⁻¹ (C-N, s-triazine); δ H NMR (CDCl₃); δ 6.92 (s, 1H, C₄″′-CH of isoxazole moiety), 7.00 to 7.95 (m, 18 Ar-H and 3 NH); MS: m/z 531.5.

2,4-Bis-(phenylamino)-6-[4′-(5″-(4″′-nitrophenyl)-isoxazole-3″-yl]-phenylamino]-s-triazine, 7b: Yield 57%; m.p. 134°C; IR (KBr): 1579 (C=N, isoxazole moiety), 805 cm⁻¹ (C-N, s-triazine); δ H NMR (CDCl₃); δ 6.90 (s, 1H, C₄″′-CH of isoxazole moiety), 7.00 to 7.90 (m, 18 Ar-H and 3 NH); MS: m/z 542.
$C_{36}H_{28}N_7SCl$: C, 69.06; H, 4.48; N, 15.67. Found: C, 69.05; H, 4.46; N, 15.65%.

2,4-Bis-(phenyl amino)-6-[4′-(4″-nitropheryl)-2″,3″-dihydro-1″,5″-benzothiazepine-4″-yl]-phenyl amino]-s-triazine, 8b: Yield 56%; m.p. 90°C; IR (KBr): 1569 (C=N, benzothiazepine moiety), 732 (C-S-C, benzothiazepine moiety), 807 cm$^{-1}$ (C-N, s-triazine); 1H NMR (CDCl$_3$): δ 3.00 (dd, 2H, C$_3$″-H$_a$ of benzothiazepine moiety), 3.25 (dd, 2H, C$_3$″-H$_b$ of benzothiazepine moiety), 5.10 (dd, 1H, C$_2$″-H$_x$ of benzothiazepine moiety), 6.90 to 8.10 (m, 22 Ar-H and 3 NH); MS: m/z 636. Anal. Calcd. for $C_{36}H_{28}N_8SO_2$: C, 67.92; H, 4.40; N, 17.61. Found: C, 67.89; H, 4.39; N, 17.64%.

Acknowledgement

The authors are thankful to the principal and management of B.K.M. Science College, Valsad for providing research facilities and CDRI, Lucknow for providing elemental and spectral data.

References