Nutritional value of some traditional edible plants used by tribal communities during emergency with reference to Central India

Ashok K Jain & Preeti Tiwari
School of Studies in Botany, Jiwaji University, Gwalior-474011, MP, India
Email: asokjain2003@yahoo.co.in

Received 05.01.1; revised

Paper deals with the study of a large number of plant species used by tribes in emergency, i.e. during scarcity of food. Information on uses of plants by tribes from abroad and various regions of India has been provided. Special emphasis has been made on estimation of nutritional value of plants consumed by Gond and Sahariya tribes of Central India.

Keywords: Nutritional value, Traditional, Emergency, Plant species, Tribes, Central India

IPC Int. Cl.3: A61K 36/00, A01G 1/00, A01G 7/00, A47G 19/00, A23L 1/00, A23L 1/06

Traditional knowledge includes pre-existing, underlying traditional culture or folklore and literary and artistic works created by current generations of society which are based on or derived from pre-existing traditional culture or folklore. Traditional culture and folklore tends to be trans-generational, old and collectively "owned" by groups or communities. Living close to nature the tribal communities have acquired immense information about the use of wild flora and fauna, which is not known to outer world. The folk selection was based on local needs, customs, preferences and habits. This rich knowledge or system if subjected to scientific scrutiny could benefit the mankind in many ways.

Traditional knowledge is gained from nature, in the laboratories of life and crystallized over millennia. This knowledge survives usually among the indigenous local communities. These are not always confined to rural or remote areas; many highly educated families living in urban areas and even in foreign lands also continue to follow many traditions. The strong basis of this knowledge has been the necessity, instinct, curiosity, strong observation, constant trail, long experience and close association with nature.

Although not tested and verified in the modern laboratory, these knowledge have stood the test of time and used by indigenous people for generations. This enormous body of ancient wisdom percolated down in oral fashion due to lack of any other suitable media which persists till date, although threatened. Several tribal communities have their history which goes back to many centuries and still persists with their traditions. In fact the life, culture and traditions of these tribal communities have remained almost static for hundreds of years, in spite of number of floods, droughts and famines and other natural calamities. Still they manage to persist and flourish their culture despite of all adverse.

Emergency food

Emergency food is often termed as wild food, as apparently it implies the absence of human interference and management, but in fact such food plants, result from the co-evolutionary relationship between human and environment. Emergency food plants can be divided into two broad groups on the basis of consumption, the one which are not consumed regularly on account of their limited seasonal availability while others are frequently consumed due to easy availability.

It has been noticed that the tribes who still live in their undisturbed forest areas and having the traditional food habit like consumption of large variety of seasonal foods, are found to be healthy and free from most of the diseases. According to one report from Govt. of India, food deficiency usually prevails in under developed tribal areas. Still such tribal groups sustain successfully under adverse conditions as they stick on the alternative source of...
food, in the absence of wheat and rice and other kinds of conventional staple food plants. A large number of plant species as supplementary food, used by tribes of India are reported in “Dictionary of Indian Folk Medicine and Ethnobotany”. Broad nutrient categories include carbohydrates, fats, proteins, vitamins and minerals such as sodium, calcium, potassium etc. which are required in comparatively larger amount by the body and therefore called as macro-elements, whereas elements required in smaller amount are called trace or minor elements e.g. iron, zinc, copper, etc.

Some reports from abroad

Various field work conducted by number of workers all over the world and survey among aboriginal societies, tribal markets and scrutiny of ethnobotanical literature had brought about the record of several hundred wild edible plants, which not only satisfy hunger but are nutritious too. A few important examples from abroad are mentioned here.

Uses of several plants during emergency in the Mixtec Highlands (Mexico) by Mestizos and Mixtecs and other small Indian groups have been observed. In these areas lack of maize is the main problem in times of scarcity. Several starchy plants are used as emergency foods to replace this staple maize: bananas (Musa sp.) and banana roots, mango seeds (Mangifera indica), sweet potato (Ipomoea batatas), inga (Inga sapindioides) acorn (Quercus candidans), cocoyam (Xanthosoma sagittifolium), manioc (Manihot esculenta), etc. It indicates that each emergency food has a different status. The tasty plants (mushrooms etc.) are commonly used by everybody, snack food plants are commonly eaten by children, bitter greens are eaten by old people. Information on some wild cereals used by nomadic Tuargs in Gourma, Northern Mali with reference to the cereal Cenchrus biflorus has been collected from arid and semi-arid zones of West Africa. Reports on importance of grasshoppers as traditional food in villages in Northern Transvaal, South Africa indicate the use of common insects during emergency.

Indian scenario

The concept of emergency food plants is not new in Indian scenario. In fact literary wealth of ancient and medieval India, contain huge information on this aspect. Kautilya’s Arthashastra (ca 4th century BC) is one of the oldest treatises in Sanskrit and deals with exceptional interest and values. It comprises vast information regarding emergency food and supposed to be first authentic approach regarding the concept. Kautilya states that during emergency, one can survive by consuming any of the food as mentioned below:

1. Ingestion of a dose of powder of siris (Albizia lebbeck) udumbara (Ficus glomerata) and shami (Prosopis cineraria) mixed with ghee, prevents hunger at least for a period of fortnight.
2. Consumption of a specified quantity of the scum, prepared from the mixture of kaseruka (Scripu grossus) rhizome of utpala (Nelumbo nucifera), roots of ikshu (Saccharum officinarum) mixed with visa (Aconitum ferox), durva (Cynodon dactylon) milk and maad (starch of rice) enables one to fast for a month.
3. One can go without food for a month after consuming a specified quantity of the powder of masa (Phaseolus radiatus), yava (Hordeum vulgare), kulattha (Dolichos biflorus) and the roots of dabha (Desmostachya bipinnata) along with milk and ghee.
4. If one drinks the glutinous paste of the roots of prasnaparni (Uraria lagopoides) and salparni (Desmodium gangeticum) along with cow’s milk, one can fast for a month.

Indian subcontinent is inhabited by over 53 million tribes belonging to over 550 different communities under 227 ethnic groups, who reside in about 5000 villages in different forest vegetation types. Each tribal community has a distinct social and cultural identity of its own and speaks a common dialect. About 106 different languages and 227 subsidiary dialects are spoken by tribes of India. The population of individual tribes are as large as about 5 million for the Gonds of Madhya Pradesh and as small as 23 among the Great Andamanese. Two third of the tribal population is concentrated in Madhya Pradesh, Orissa, Bihar, Gujarat and Rajasthan states of India. In the North eastern region and in islands, the tribal population is about 50% with high ethnic density. Indian tribes utilize over 9500 wild plants for various purposes including medicinal, fodder, fiber, fuel, edible, essence, cultural and other purposes. Out of this number nearly 3900 wild plants are used as edibles. Reports from several tribal dominating regions indicate that a large number of wild plant species are used by them during emergency.

Over 155 edible plants were reported to be used by tribes of Assam as supplementary and
emergency food. A large number of plant species including algae, fungi and angiosperms have been reported to be used by tribes of Manipur. In addition to general uses, various indigenous techniques associated with the preparation and preservation of fermented plant products like bamboo shoots (soibum and Soidom), seeds of *Glycine max*, petiole of *Alocasia indica* along with small fishes (Hentak) and seeds of *Anisomeles indica* with other plant ingredients are used.

Uses of over 64 wild plant species, consumed by folk people from Mandi district in Northwest Himalayas have been reported. The produce of six species, viz. *Cordia dichotoma*, *Diplagium polypoides*, *Emblica officinalis*, *Morchella esculenta*, *Myrica esculenta* and *Punica granatum* are used widely and marketed. A good number of life supporting promising food plant species belonging to angiosperms, ferns and fungi are used by *Abujh-Maria* tribe of Bastar region of Chhatisgarh state.

Ethnobotanical survey among the tribes inhabiting Western Ghats forests of Kerala indicates that a large number of wild plant species are used as edibles. Crude protein and lipid contents besides several other agro-botanical aspects of eight accessions of *Canavalia gladiata* (Sword bean) have been studied from eight different agro-climatic regions of Tamil Nadu. Leaves and flowers of many wild plants are used as supplementary vegetable in Darbhanga district of Bihar. A large varieties of wild tubers are consumed by tribes of Andhra Pradesh.

Paharia tribes of West Bengal consume a large number plants during emergency. Ripen fruits of *Grewia optiva* are eaten by local tribes of Indo-Nepal Himalaya. A survey indicates that over 37 wild edible plants are used by aboriginals of Vindhyan Plateau, an important region of Central India. Over 45 plant species including *Bauhinia vahlii*, *Amaranthus viridis*, *Rhus parviflora*, *Ficus benghalensis*, *Phoenix dactylolpha*, etc. consumed during emergency by tribes inhabiting Pachmarhi Biosphere Reserve.

Methodology

Present work was carried out on 10 wild species, used by tribes of different regions of Central India for estimating the nutritional value. The selected species are used as edibles during emergency by *Gond* and *Sahariya* tribes of the state. Following ten species were selected for this purpose (Table 1). Nutritional value of some indigenous varieties of paddy grown by tribes of Assam, Bihar, Chhatisgarh and Jharkhand has been studied.

Table 1—Species selected for nutritional analysis

<table>
<thead>
<tr>
<th>S. No</th>
<th>Name of the plant species</th>
<th>Common name</th>
<th>Family</th>
<th>Parts consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Oxalis corniculata Linn.</td>
<td>Khati buti</td>
<td>Oxalidaceae</td>
<td>Leaves</td>
</tr>
<tr>
<td>5.</td>
<td>Cassia fistula Linn.</td>
<td>Amaltas</td>
<td>Caesalpinaceae</td>
<td>Flowers</td>
</tr>
<tr>
<td>6.</td>
<td>Cassia obtusifolia Linn.</td>
<td>Panwar</td>
<td>Caesalpinaceae</td>
<td>Leaves</td>
</tr>
<tr>
<td>7.</td>
<td>Prospis cineraria Linn.</td>
<td>Shami, Kshenkar</td>
<td>Mimosaceae</td>
<td>Pods, Bark</td>
</tr>
<tr>
<td>8.</td>
<td>Boerhavia diffusa Linn.</td>
<td>Panarnava</td>
<td>Nyctaginaceae</td>
<td>Pods, Bark</td>
</tr>
<tr>
<td>9.</td>
<td>Achyranthes aspera Linn.</td>
<td>Latjeera, Chirchita</td>
<td>Amaranthaceae</td>
<td>Seeds</td>
</tr>
<tr>
<td>10.</td>
<td>Amaranthus viridis Linn.</td>
<td>Chaulai</td>
<td>Amaranthaceae</td>
<td>Leaves</td>
</tr>
</tbody>
</table>
value of leaves, fruits, flowers, seeds and bark (of tree species) of selected species were analyzed. Some important nutritional parameters like total sugars\(^{33}\), protein\(^{34}\), lipids\(^{35}\) and amino acids\(^{36}\) have been estimated by standard methods.

Results and discussion

Estimated values of various nutritional compounds observed in different parts of selected plant species are presented in Tables 2-5 and Fig. 1-3.

Discussion

With the advancement of the modern civilization the traditional knowledge about the uses of plants for various purposes, among the aboriginal cultures is rapidly disappearing. There is urgent need for ethnobotanical observations to find out the secrets of nature of such rapidly disappearing primitive culture. Present work is a scientific approach regarding the nutritive value of wild food plants consumed by two different tribes of Central India, i.e. Gond and Sahariya. Out of a large number of plant species, only 10 were selected and investigated on nutritional grounds. The plants consumed by two tribes as supplementary diet during scarcity of regular or conventional food yielding plants. On account of their nutritional status these plants can be recommended as food for outer world besides their main consumers to fight against malnutrition and food scarcity.

Protein is one of the important parts of Human nutrition; it not only supports growth but is also important for maintenance and repair of body tissues. The total daily protein intake is based on the growth needs and desirable weight of an individual. The protein diet recommended for a healthy adult is set at 0.8 gm protein per kilogram of body weight\(^{37}\). The major component of deposited or stored lipid in plants and animal cells are Triacylglycerols. Lipids besides plant sources are also synthesized within the body on account of availability of fatty acids.

Among all the ten species investigated for their nutritive \textit{Oxalis corniculata} L., consumed by Sahariya tribe, emerged as the most nutritive one. Its leaves contain 12.05% of total sugar, 22.28% crude proteins and 23.75% crude lipids. The values are sufficient to match the Recommended Dietary

\begin{table}[h]
\centering
\begin{tabular}{llc}
\hline
\textbf{S. No.} & \textbf{Part of plants} & \textbf{Plant species} & \textbf{Total sugar content (%)} & \textbf{SE} \\
\hline
1 & Leaves & \textit{O. corniculata} & 12.056 & ±0.2 \\
2 & Fruits & \textit{R. parviflora} & 1.256 & ±0.7 \\
3 & Flowers & \textit{M. oleifera} & 13.232 & ±0.2 \\
4 & Seeds & \textit{B. vahlii} & 4.79 & ±0.8 \\
5 & Bark & \textit{P. cineraria} & 0.78 & ±0.5 \\
\hline
\end{tabular}
\caption{Total sugar (%) in different parts of selected plant species}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{llc}
\hline
\textbf{S. No.} & \textbf{Part of plants} & \textbf{Plant species} & \textbf{Crude protein content (%)} & \textbf{SE} \\
\hline
1 & Leaves & \textit{O. corniculata} & 22.28 ±0.6 \\
2 & Fruits & \textit{R. parviflora} & 5.11 ±0.7 \\
3 & Flowers & \textit{M. oleifera} & 18.9 ±0.7 \\
4 & Seeds & \textit{B. vahlii} & 24.21 ±0.5 \\
5 & Bark & \textit{P. cineraria} & 7.26 ±0.7 \\
\hline
\end{tabular}
\caption{Crude protein (%) in different parts of selected plant species}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{llc}
\hline
\textbf{S. No.} & \textbf{Part of plants} & \textbf{Plant species} & \textbf{Crude lipid content (%)} & \textbf{SE} \\
\hline
1 & Leaves & \textit{O. corniculata} & 23.75 ±0.5 \\
2 & Fruits & \textit{R. parviflora} & 24.5 ±0.6 \\
3 & Flowers & \textit{M. oleifera} & 21.5 ±0.6 \\
4 & Seeds & \textit{B. vahlii} & 28.5 ±0.7 \\
5 & Bark & \textit{P. cineraria} & 10 ±0.9 \\
\hline
\end{tabular}
\caption{Crude lipid (%) in different parts of selected plant species}
\end{table}
Allowances. All the nine essential amino acids are found to be present in the leaves of *Moringa oleifera*. Besides these components leaves of *M. oleifera* are the good source of β carotene, a precursor of vitamin A. It contains 6.8-14.3 mg/100gm fresh wt. of β carotene. Flowers of *M. oleifera* are another good source of nutrition on the grounds of RDA as it contains 13.23% of total sugar, the value was highest among the investigated plants.

Seeds of *Bauhinia vahlii* often consumed by the Gond tribe of Madhya Pradesh are the richest source of proteins (24.21%). The lipid value for the seeds (28.5%) is also quite high. Further, its seeds seem to be the good source of nitrogen and richest source of magnesium.

Cassia obtusifolia L. also seems to be rich in protein (20.25%), lipid (23.25%), total sugars (4.44%), is sufficient to meet the daily requirement of nutrition and equivalent to that of many conventional food plants and products.

Boerhaavia diffusa is another under exploited wild species, known for its medicinal value since long back, but left untouched on nutritional grounds. It is frequently consumed by sahariya tribe. It is also a good source of electrolyte potassium.

Amaranthus viridis is nutritionally rich wild edible species, consumed by sahariya tribe during rainy months. Proteins value associated with the leaves of *A. Viridis* is 6.33%, which is not satisfactory on nutritional grounds. It comes as a best source for mineral and electrolyte diet.

Prosopis cineraria is a life saving plant species earlier reported to be consumed during severe droughts of Rajasthan. Nutritive values of leaves of this species have been established as life saving plant of western Rajasthan. The leaves are used as cattle feed and pods are consumed by local people and tribes since ancient time. The value obtained during investigation of bark was, is not satisfactory to fulfill RDA values, which is 50-100 gm/day. Crude protein content (7.26%) and crude lipid content (10%) were observed to be lowest among all the ten species studied. Pods of *P. cineraria* were found more nutritive as compared to the bark. Prolong consumption of bark may cause malnutrition but can ensure survival during extreme condition. Bark flour cannot be considered as supplement to the conventional food plants, but do have characteristic features of emergency food plants.

Achyranthus aspera is reported to be good during severe famine and drought since ancient time. It is mentioned that seeds were consumed during wars and other emergencies in combination with other plants. The species has potential to meet the nutritional requirement of body to survive especially with limited source of food during wars, etc. Potential of seeds of

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Edible parts</th>
<th>Plant name</th>
<th>Essential amino acids</th>
<th>Non-essential amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. e.</td>
<td>Leaves</td>
<td>A. virdis</td>
<td>Phenylalanine, Isoleucine, Methionine, Valine.</td>
<td>Aspartate, Ornithine.</td>
</tr>
</tbody>
</table>

Regarding their life saving properties can be established on the basis of amount of free sugar, i.e. 2.37% and 1.48% of total sugars which is enough to ensure survival capacity, being immediate source of energy. The percent crude protein in the species, is bit lower than that of almond. Phenylalanine, isoleucine and valine are found essential amino acids in the seeds of *A. aspera*.

Fruits of *Rhus parviflora* are consumed raw by Gond tribe of Central India, possess lowest nutritive value among 10 species studied. Besides the low mineral values the fruits have potential to meet other nutritional requirements as supplement or in combination with other seasonal fruits. Only three essential amino acids viz. phenylalanine, Isoleucine and valine were found in the species.

On the basis of detailed chemical analysis and observations, it can be concluded that all the leafy edibles, though seasonal or perennial exhibited higher nutritive value. Young leaves of *O. corniculata* and *M. oleifera* seem to have potential to replace other conventionally used vegetables. This may help to release stress from the costly conventional food plants or vegetables. Protein and other nutritive contents are found in higher concentration in wild form as compared to the cultivated ones. All the selected species grow wild in nature and are not being cultivated. This may be the reason for high nutritive value. But on account of their limited production these plants cannot replace conventional staple food plants however can only be used as supplement in their particular native places. There are a good number of other species which possess high nutrient value but are not sold/available in the local markets. Efforts should be made to bring and popularize these plants, as it has been done for mushroom, which are being introduced to the farmers and local markets after being evaluated on nutritional grounds.

References

21 Vedivel V, Janardhanan K & Vijaya Kumari K, Diversity in sword bean (Caravalia gladiata (Jacq.) DC.) collected from Tamil Nadu, India, Genetic Resource and Crop Evolution, 45 (1998) 63-68.

22 Jha V, Mishra S, Gupta AN & Jha A, Leaves and flowers utilized as supplementary vegetable in Darbhanga (North Bihar) and their ethnobotanical significance, J Econ Taxon Bot Addl Ser, 12 (1996) 395-402.

30 Rai MK, Observation on the ethnobotany of Gond tribe of Seoni district, plants used as food, J Econ Tax Bot Addl Series, 10 (1992)

38 Anonymous, Recommended Dietary Allowances for healthy Americans, 1980.
