A structural study on the cubic crystalline modification of
[Cp₆Ti₆O₈][Bu₃Sn₂S₂(SH)₂Cl]₂

Neetu Singh & Subrato Bhattacharyya*
Department of Chemistry, Faculty of Science,
Banaras Hindu University, Varanasi 221 005, India
Email: s_bhatt@bhu.ac.in

Received 23 May 2011; revised and accepted 6 Oct 2011

Crystal and molecular structures of a cubic crystalline form of [Cp₆Ti₆O₈][Bu₃Sn₂S₂(SH)₂Cl]₂ have been studied by single crystal X-ray diffraction. The cation, [Cp₆Ti₆O₈]²⁺ is a cluster comprising an octahedron with six Ti(IV) atoms at the vertices. Each of the eight faces is capped by an oxygen atom. The cluster is electron deficient as it possesses 84 electrons only. The anion is a six membered ring (with alternated Sn and S atoms) having a chair conformation. The crystal undergoes a phase transition on cooling which has been monitored by X-ray diffraction studies.

Keywords: Organometallic compounds, Organotin compounds, X-ray crystallography, Metal clusters, Cyclopentadienyl compounds, NBO calculations, Phase transitions, Tin, Titanium

Molecular and electronic structures of octahedral metal clusters have been studied for the past several years. The structure of the neutral Cp₆Ti₆O₈ cluster has been studied both experimentally (X-ray crystallography) and theoretically. As evident from the X-ray study, each Ti atom occupies a vertex of a regular octahedron and is thus bonded to four equivalent Ti neighbors. The total number of electrons required for Cp-Ti and O-Ti bonding in the cluster is 84 while the number of available electrons is 86. Gillespies on the basis of valence-bond arguments, suggested that the two excess electrons located at the centre of the octahedron. Earlier calculations based on extended Hückel approximations also suggested that the two “excess” electrons occupy dₓ²−ₐᵧ² orbitals from the two Ti atoms which lie along the z coordinate and the dₓ²−y² orbitals from the four Ti atoms lying along x and y coordinates. The coefficients of the orbitals are such that the lobes pointing towards the centre of the octahedron are positive. In other words, two electrons are present at the centre of the cluster as suggested by the simple valence bond treatment are responsible for holding the cluster. The presence of two (or more) excess electrons has been observed in all such neutral organotitanium chalcogenide clusters.

Very recently, we have synthesized two ionic compounds containing the dicationic cluster [Cp₆Ti₆O₈][Bu₃Sn₂S₂(SH)₂Cl]²⁻ with the anions either cyclic [n-Bu₃Sn₃(SH)₃Cl]⁻ or acyclic [n-Bu₃Sn₃Cl₃(S)₂(SH)₂]⁻. [Cp₆Ti₆O₈] [n-Bu₃Sn₃S₃(SH)₂Cl]₂ crystallizes in two different morphologies (prismatic and star shaped) and have different crystal structures. The prismatic crystals are orthorhombic (Pbca) while the star shaped crystals have a cubic system with P2₁3 space group. We report herein the crystal and molecular structure of the cubic crystals.

Experimental
Details of the synthesis of the compound have been reported elsewhere. X-ray diffraction analyses were carried out using Xcelibur Eos Oxford CCD diffractometer. The X-ray data were collected at room temperature in the hemisphere mode. Attempts to collect the data at -100 °C were unsuccessful owing to the crystal deformation. It was observed that even at -30 °C there were some changes in the crystal structure. The powder patterns using a single crystal were, therefore, collected at various temperatures. Data integration/reductions were carried out using CrysAlisPro software. Structure was solved by SHELXS-97 and refined using the SHLEXL-97 programs using the WINGX (ver. 1.80.02) platform.

Results and discussion
The arrangement of the complex ions in the lattice is shown in Fig. 1. Thermal ellipsoid plot of the cation is shown in Fig. 2a. The six titanium(IV) atoms constitute a perfect octahedron (Fig. 2b) with identical Ti-Ti bonds which is capped by eight oxygen atoms at each of its eight faces. The latter constitute an approximate cube with an O-O distance (edge) varying between 2.453 and 2.498 Å (Fig. 2c). The Ti-O bonds are also identical and their lengths vary between 1.930 and 1.999 Å (Table 1). The small variations in Ti-O bond lengths may be attributed to crystal packing effects. These dimensions are quite comparable to those reported for the orthorhombic form.
The anionic part is also structurally comparable to that of the reported orthorhombic crystal. The three sulphur and three tin atoms constitute a six membered ring with a chair conformation (Fig. 3).

The chlorine atom occupies the axial position of the ring, thus symmetrically capping the three Sn(IV) atoms. The Sn₃S₃ ring is centro-symmetric (Notably, the analogous ring had no centre of symmetry in the case of the orthorhombic crystal). All carbon atoms of the n-butyl groups are disordered and each has been refined giving partial occupancies at two different sites. The two Sn-S bond lengths are different, the shorter one being equal to the Sn-SH bond length (Table 1). Six-membered trithia-tritin compounds (R₂SnS)₃ are well known and most possess a twisted boat conformation. On the basis of density functional

<table>
<thead>
<tr>
<th>Bond lengths (Å)</th>
<th>Bond angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn-Cl₂</td>
<td>2.847(13)</td>
</tr>
<tr>
<td>Sn-S₃</td>
<td>2.428(13)</td>
</tr>
<tr>
<td>Sn-S₄</td>
<td>2.376(11)</td>
</tr>
<tr>
<td>Sn₁-S₂</td>
<td>2.426(9)</td>
</tr>
<tr>
<td>Sn₁-S₁</td>
<td>2.334(11)</td>
</tr>
<tr>
<td>Ti₁-O₂</td>
<td>1.94(2)</td>
</tr>
<tr>
<td>Ti₁-O₁</td>
<td>2.00(2)</td>
</tr>
<tr>
<td>Ti₁-C₄</td>
<td>2.30(3)</td>
</tr>
<tr>
<td>Ti₁-C₁</td>
<td>2.33(3)</td>
</tr>
<tr>
<td>Ti₁-C₂</td>
<td>2.31(3)</td>
</tr>
<tr>
<td>Ti₁-O₃</td>
<td>1.94(2)</td>
</tr>
<tr>
<td>Ti₁-C₃</td>
<td>2.30(3)</td>
</tr>
<tr>
<td>Ti₁-C₅</td>
<td>2.34(3)</td>
</tr>
</tbody>
</table>

Sn₁-S₃-S₄ 84.6(4) 175.4(5) 94.3(5) 94.3(4) 102.0(5) 129.3(9)

*Estimated standard deviations in parentheses.
calculations, we have shown earlier that the chair conformation is less stable than the twisted boat form as the former suffers from 1,3-diaxial repulsive interactions\(^1\). The anion has chair conformation, as has been recently reported\(^1\) in compounds such as \([\text{RSn}]_3\text{S}_4\)^\(^2\). Such a conformation is stabilized possibly because of capping by the Cl atom. It may be mentioned here that organotin hydrosulphides usually undergo condensation reaction leading to the formation of sulphide bridged compounds\(^1\). A few hydrosulphide compounds are, however, known which are stabilized by bulky co-ligands or by rigid frameworks\(^1\). Very recently, we have isolated a triorganotin(IV) hydrosulphide\(^2\). In the present case, however, the negative charge prevents the nucleophilic attack of the adjacent SH groups and seems to be the stabilizing factor.

Interestingly, physical properties of the cubic crystals are also different from the orthorhombic crystals. The latter does not show any change in its crystallinity on cooling up to -150 °C while the cubic crystals showed a phase transition below -30 °C. The X-ray diffraction pattern (obtained using a single crystal) of a cubic crystal at room temperature shows a pair of closely spaced peaks at a 2θ values of 3.12 and 3.74 ° (Fig. 4), while at -150 °C the diffraction pattern of the same crystal was quite different showing several other peaks. The crystal exhibited hysteresis when it was brought back to 0 °C (from -150 °C) as all the peaks found at lower temperature were still observable (but less intense). On being brought to room temperature (20 °C) the crystal developed cracks and broke down into very small pieces.

Table 2—Summary of calculated charges on various atoms

<table>
<thead>
<tr>
<th>Atom</th>
<th>Neutral cluster</th>
<th>Dicationic cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>+1.71 - +1.77</td>
<td>+1.83</td>
</tr>
<tr>
<td>O</td>
<td>-1.01 - -1.02</td>
<td>-1.00</td>
</tr>
<tr>
<td>Ghost</td>
<td>-0.09</td>
<td>-0.11</td>
</tr>
</tbody>
</table>

Though the dication possesses 84 electrons and lacks the required ‘excess’ electrons to hold the cluster intact, yet the Ti-Ti distances indicate the existence of a single bond between each pair of Ti(IV) atoms.\(^2\) Electronic structure of the cluster dication has been studied on the basis of density functional calculations. The initial coordinates have been obtained from the X-ray data (only Cp\(_6\)TiO\(_8\) fragment), which were used to fully optimize the structures of both neutral cluster and dicationic cluster using PBE1 hybrid functional\(^2\) and 6-31+G** basis set. The optimized geometries were then used for natural bond orbital (NBO) analyses. A ghost atom designated in Gaussian 03\(^2\) was placed at the centre of the octahedron. The natural charges on selected atoms of the neutral and dicationic clusters are listed in Table 2. The idea that the two electrons are located in the centre of the octahedron is not really confirmed by these results. Only a small (natural) charge density could be located at the centre of the octahedron in both neutral and dicationic clusters. The discernible trend from the charge calculation is the increase in negative charge at the centre in the dication with a very small increase in the positive charges on the Ti atoms. As a result, the Ti-Ti distances in the dication is marginally longer than those in the neutral cluster\(^4\).

Results of second order perturbation theory analysis of Fock matrix in NBO\(^2\) basis, however, reveal the nature of bonding in the cluster; the Ti-Ti bonds have formed as a result of donor-acceptor type bond formations between a pair of Ti atoms\(^1\).

Supplementary data
Crystallographic data in CIF format (CCDC No. 788690) can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or form the Cambridge crystallographic data centre, 12 Union Road, Cambridge CB2 1EZ, UK or by Email: deposit@ccdc.cam.ac.uk.

Acknowledgement
Financial assistance from the Council of Scientific and Industrial Research, New Delhi India, is gratefully acknowledged.
References
21 http://www.ccdc.cam.ac.uk/products/csd/radii
24 *Gaussian 03W*, (Gaussian Inc, Wallingford, CT), 2004.