Advances in minimal processing of fruits and vegetables: a review

Md Wasim Siddiqui¹*, Ivi Chakraborty¹, J F Ayala-Zavala² and R S Dhua¹

¹Department of Post Harvest Technology of Horticultural Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741 252, India
²Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, AC). Carretera a la Victoria Km 0.6, La Victoria. Hermosillo, Sonora 83000, Mexico

Received 04 January 2011; revised 08 August 2011; accepted 11 August 2011

This paper covers an exhaustive review on advances in minimal processing of fruits and vegetables. The review includes an exclusive discussion on production chain of minimally processed products from raw material selection to its consumption with different aspects including food safety issues. The intent is to provide a level of understanding that can be used to underpin future research directions in order to resolve existing issues that limit fresh-cut quality and shelf life.

Keywords: Fresh-cut fruits and vegetables, Minimal processing, Physiological activity, Preservation techniques

Introduction

Minimally processed (MP) fruits and vegetables are fresh fruits and vegetables processed to increase their functionality without greatly changing their fresh like properties. Fresh-cut produce industry has been on a double-digit growth rate in response to an increased demand by consumers, particularly in developed countries. Demand of MP fruits and vegetables has increased rapidly in Europe and USA, where demand is expected to represent 25% of the total food market in the near future¹. In Spain² this market is showing an annual increase of sales of 20%, with 53,465 t sold in 2006. A major challenge facing the industry, however, is the rapid quality deterioration and reduced shelf-life of fresh-cut products compared with whole vegetables due to physiological disorders and decays³. Minimal processing (MPg) of fruits and vegetables is important to keep the product fresh but convenient without losing its nutritional quality and the product should have a shelf life sufficient to distribution feasible within the region of consumption⁴. Microbiological, sensory, and nutritional shelf life of MP fruits and vegetables should be at least 4-7 days but preferably even longer⁵,⁶. Production chain of MP or fresh-cut fruit and vegetables change fresh-like character of fresh-cut produce in a rather limited way⁷. The processes used for preparing fresh-cut fruits and vegetables induce mechanical injury in the tissue changing its physiology, accelerating deterioration during gestation period (transportation & retailing) and consequently shortening their shelf life. Cells of MP fruits and vegetables are often physiologically active, resulting in ongoing protective and/or deteriorative changes in cell structure and cell chemistry, as well as alteration in chemical composition of environment. MPg increases perishability rather than stability of fruits and vegetables⁸. Other types of deterioration include chemical and enzymatic changes, microbial deterioration and improper handling, processing and packaging⁹. Color and appearance are quality aspects for a product. Shelf life of MP fruits and vegetables is generally limited by changes in sensory properties than by microbial growth¹. MP fruits and vegetables are preserved by different techniques⁴.

This paper reviews advances in MPg of fruits and vegetables.

Minimal Processing (MPg)

MP products may be prepared at source of production or at regional and local processors. Preparation procedure generally includes processes such as washing, peeling, cutting, trimming, slicing, shredding, dicing and coring etc. Physiological age and cultivar type of raw material used for producing MP products can affect the quality and storage life. The first essential step in reducing overall contamination of raw material is by removing the outer leaf layer or surface dirt. Washing also helps to remove sugars and other nutrients at cut

*Author for correspondence
E-mail: wasim_serene@yahoo.com
surface of the produce, which favor microbial growth and discoloration. To prepare a ready to eat product, most of the fruits and vegetables are subjected to preliminary operations as MPg procedure (peeling and coring) to avoid inedible parts. Peeling process depends on raw material types and influences quality of finished products. Peeling methods involved hand peelers or knives, which produce high quality products, but this method is not suitable for bulk production. Abrasion, steam, and lye peeling are common commercial methods. Abrasion peeling method using a carborundum disc and running water is generally used for peeling of potatoes and root vegetables. Other methods of peeling include freeze, lame, and vacuum peeling where acid, calcium chloride and ammonium salts amongst others, are used to peel various fruits and vegetables.

Some of the fruits and vegetables require further operations such as slicing, shredding or dicing, before packaging. Such fruits and vegetables become more susceptible to spoilage by releasing nutrient rich vascular and cellular fluids on disruption of protective epidermal layers. A number of factors (final piece size, sharpness of cutting surface & mechanical aspects of cutting action and mechanical properties of product being cut) are responsible for the extent of injury to the product, influenced by slicing. Increasing wound area increases rate of deterioration; vertical as opposed to a horizontal cut also increased the rate. Slicing caused physical damage, physiological stress and enhanced microbial growth in peeled carrot. Sharpness of blade also has effect on injury to commodity such as blunt blade > Sharp machine blade > razor blade.

Physiological Responses and Bio-Chemical Changes of Minimally Processed (MP) Fruits and Vegetables

Fruits and vegetables are living, respiring, edible tissues that continue to be metabolically active even after harvest but in modified form. Physiology of MP fruits and vegetables is generally typical of that observed in plant tissues wounded or exposed to stress conditions. Physiological process leads to deterioration, affected by intrinsic (climacteric and non-climacteric commodities) and extrinsic [temperature, ethylene, oxygen (O₂) and carbon dioxide (CO₂) concentrations] factors. Increased respiration rate causes major tissue disruption as enzymes and substrate become mixed with other cytoplasmic and nucleic substrates and enzyme. Despite respiration, fruits and vegetables demonstrate wound-induced ethylene production and increase surface area per unit volume, thus exacerbating water loss. Temperature induced injury during low temperature storage and physical abrasions resulting from processing and packaging induce abusive atmosphere or desiccation, resulting in undesirable changes in product flavor, texture, and nutritional quality. Shelf life of un-cut or fresh-cut produce is almost invariably dependent upon stress tolerance and stress induced senescence dynamics of raw commodity. Other types of deterioration include chemical and enzymatic changes and microbial deterioration. Physical damage (improper harvesting, handling, processing and packaging) can also affect shelf life of MP fruits and vegetables.

Ethylene

MP fruits and vegetables produce large amount of ethylene, which results in shorter shelf life of the products. Ethylene accelerates ripening, softening, and senescence, which lead to membrane changes. Ethylene production is promoted by stresses (chilling injury and wounding) and this stress-induced ethylene can enhance fruit ripening, but may cause chlorophyll loss and yellowing of green stem and leafy vegetables such as yellowing of harvested broccoli florets at 5°C. It stimulates phenolic compounds in lettuce and increases activities of phenyl-alanine-ammonialyase (PAL), peroxidase (POD) and polyphenoloxidase (PPO). Crisp texture of cucumbers and peppers is lost upon exposure to ethylene. Ethylene induced POD activity is correlated with increased lignin formation and cell wall thickening in lettuce.

Respiration

MP products have higher rate of respiration, which generally leads ageing of the products by using reserve energy during oxidative-reduction process. Higher the rate of respiration, shorter will be the shelf life. Peeling and slicing increase respiration rate up to 2-3 folds in baby carrot, and 2-fold in kiwi fruit. However, rate of respiration remained unaffected after peeling and slicing in ripe banana. Thus, effect of peeling and slicing on the rate of respiration and ethylene production differs between climacteric and non-climacteric fruit and with physiological age of climacteric fruit. Wound respiration in some plant tissues may be related to α-oxidation of fatty acids, CO₂ and responsible for increased respiration after slicing of potato.

Water Loss

Plant tissues must be in equilibrium with atmosphere, at the same temperature [relative humidity (RH), 99-
Stressed and senescent tissues have leaky membranes, which allow diffusion of small molecular weight compounds and water into intercellular spaces and wound surfaces. Thermal processing and endogenous enzymes from damaged cells may change proteins and carbohydrates into compounds more readily usable by microorganisms and may destroy natural micro flora on the food, which competes with pathogenic microbes for nutrients.

Hazard analysis and critical control points (HACCP), an effective and rational means of assuring food safety, can be applied throughout the food chain from primary production to final consumption. HACCP was first introduced in European Directive 93/43/CE (1993). HACCP technique has progressively been recognized as a cost-effective procedure for ensuring food safety. It can be considered as efficient tool for both food industry and health authorities to prevent food borne diseases. HACCP identifies potential avenues of contamination; establishes control measures to eliminate or minimize these hazards; and monitors and documents effectiveness of the program. HACCP provides a more specific and critical approach to the control of hazards than achievable by traditional inspection and quality control procedures. With consumption of fresh-cut fruits and vegetables in USA, Food and Drug Administration (FDA) set out clear guideline to minimize microbial food safety hazards for fresh fruits and vegetables. These guideline span from “farm to fork” and include good agricultural practices (GAP), good manufacturing practices (GMP) and HACCP.

Oxidative Browning

Browning or discoloration of MP fruits and vegetables is one of the most important factors, which hinders acceptance and storage life of commodity. This occurs at the surface of fruits and vegetables because of disruption of compartmentation that occurs when cells are broken, allowing substrates, and oxidase enzymes to come in contact with each other. Wounding also induces synthesis of some enzymes involved in browning reaction or synthesis of their substrates. PAL is a key enzyme for synthesizing phenolic compounds, which can then be oxidized by PPO, producing brown polymers that can contribute to tissue browning of commodities (lettuce). PPO oxidizes flavonoids and chlorogenic acid to brown compound.

Microbiology of Minimally Processed (MP) Fruits and Vegetables

Increase in microbial populations on MP products is associated to damaged tissues and broken cells, as microbial growth is greater on fresh-cut products than intact product. Cell disruption leads to release and intermixing of enzymes and substrates that may be used by native or exogenous microorganisms to grow on the product. Heat treatments, however, minimal, as well as peeling, trimming, topping, pitting, slicing and bruising destroy protective membranes and barriers of living plants, permitting entry and contamination with microbial pathogens. The chances of food borne illness due to pathogens or spoilage organisms growing in these products are very high. Yeast growth might be a limiting factor of shelf life for fresh-cut celery, mushroom slices, and chicory endive. Yeast growth was not inhibited by 0.8 kPa O₂, or a combination of 0.8 kPa O₂ and 10 kPa CO₂ treatment or a super atmospheric Q₃ (95 kPa) treatment of mixed salad. Growth of microorganisms is facilitated by plant cell injury, senescence, or stress. Stressed and senescent tissues have leaky membranes, which allow diffusion of small molecular weight compounds and water into intercellular spaces and wound surfaces. Thermal processing and endogenous enzymes from damaged cells may change proteins and carbohydrates into compounds more readily usable by microorganisms and may destroy natural micro flora on the food, which competes with pathogenic microbes for nutrients.

Treatments for Quality Maintenance of MP Fruits and Vegetables

Different treatments, used to control undesirable changes, are physiological and physical changes that adversely affect the quality of MP products. MP fruits and vegetables are preserved by refrigeration, chemical preservatives, additives, bio-preservatives, mild heat treatments, microwave processing, reduction of water activity, ionizing irradiation, disinfectants [electrolyzed water treatment, chlorination, hydrogen peroxide (H₂O₂)], high hydrolytic pressure technology, high intensity pulsed electric field, pulsed light, ozone technology, nanothermosonification, oscillating magnetic field, ohmic heating, vacuum/hypobaric packaging and hurdle technology. Edible coatings (multilayer coating, osmotic membrane coating) are also being used in MPg of fruits and vegetables. Hot air and water treatment, electrolyzed oxidizing water (EOW) refrigeration,
humidity control and dipping in different chemical solutions (ascorbic acid and calcium salts) have been used successfully to maintain quality and to extend shelf life of MP products.

Sanitizers

Different decontaminants (chlorinated water, sulphites, sodium hypochlorite, neutral EOW and peroxyacetic acid) are used in MP products to enhance their shelf life and for giving good appearance. In general, fresh-cut fruits should be rinsed just after cutting with cold (0-1°C), chlorinated water at pH 7.0. Chlorination (not more than 200 ppm total chlorine) may not be desirable for all fresh-cut fruits. Treatment with neutral EOW containing free chlorine (5 & 30 mg/l) reduces respiration of cabbage and leek respectively. Neutral EOW with different free chlorine concentrations (12, 60 and 120 mg/l) reduces respiration rate of fresh-cut iceberg lettuce. Peroxyacetic acid has influence on respiration rate of vegetables (carrot, fresh-cut white cabbage, green bell pepper). MP grapes treated with ethanol show reduced cell load of spoilage organisms. Other natural compounds of plant origin like aroma compounds are used to control decay of MP fruits and vegetables, particularly when packed in modified atmosphere packaging (MAP). Dipping of whole vegetables in 5 or 10% H$_2$O$_2$ for 2 min, prior to slicing, is highly effective in delaying soft rot. H$_2$O$_2$ treated products have no adverse effect on aroma, flavor, and appearance. Other chemicals as sanitizers for use in fresh-cut produce include chlorine dioxide (ClO$_2$), bromine, and iodine compounds, and ozone.

To reduce microbial loads on fruit surface, hot water immersion treatments are used to reduce browning development in fresh-cut tissue of fruits and vegetables (lettuce, apples, pear). Fresh-cut peach fruit treated at 40°C for 70 min and 50°C for 10 min effectively control browning and retains firmness during storage. Temperatures (≥45°C) for shorter period have been effectively proposed to reduce browning in fresh-cut products (lettuce, celery and Chinese water chestnut). Heat treatment is also effective in reducing respiration and ethylene production, and also helps in retaining firmness of fresh-cut slices of muskmelon, apple, pear, peach and mango. Heat treatments with UV-C radiation have been used in different MP fruits and vegetables like mango, cantaloupe, onion, garlic, leek, celery and broccoli. Heat treatment may reduce activities of enzymes that are normally increased during ripening, senescence or storage. The use of heat treatments as hot water or hot air can be successfully utilized to delay degreening of broccoli.

Food irradiation has the potential to preserve fruits and vegetables for longer period of time almost in their fresh like state. Combined use of MAP and UV-C radiation reduced psychrotrophic and coliform bacteria and yeast growth in MP ‘Red Oak Leaf’ lettuce without adversely affecting its sensory quality. UV-C inhibited microbial growth, retarding decay, and delaying senescence of mango, zucchini squash, strawberries and watermelon. However, UV-C can change cell permeability in leafy vegetables, increasing leakage of electrolytes, amino acids and carbohydrates, which can stimulate bacterial growth and lead to shortened shelf life of MP products. Current FDA limit for irradiation on fresh produce is 1.0 kGy, but to destroy yeast and molds spores, required irradiation levels (1.5-20 kGy) are damaging plant tissues. UV-C have been utilized to extend post harvest life of fresh processed lettuce and pomegranate. Combination of heat treatment and UV-C has been applied in strawberries and processed broccoli florets. Irradiation reduces respiration as well as ethylene production of produce. It can also delay chlorophyll degradation and retention of reducing sugar in broccoli florets. UV-C doses (0.5-20 kJ/m) inhibit microbial growth by inducing formation of pyrimidine dimers that distort DNA helix and block microbial cell replication. Cells unable to repair their radiation-damaged DNA die. However, UV induces enzymatic photo repair and expression of excision repair genes that may restore DNA integrity in exposed microbial cells. Effectiveness of UV-C seems to be independent of temperature (5-37°C), but depends on the incident irradiation determined by the structure and surface topography of treated product. Low to moderate UV-C radiation can be an effective alternative to chlorine for sanitizing MP spinach leaves and preserving their quality.

Antimicrobial compounds may be added to fresh-cut fruits and vegetables to inhibit deleterious microorganisms and several natural volatile compounds have been reported to possess antimicrobial activity. Methyl jasmonate (MJ) either as a vapor or as an emulsion reduce microbial contamination of fresh-cut celery and peppers suppress green mould growth on grapefruit and inhibit grey mould infection on strawberries alone or as a co-fumigant with ethanol. Ethanol has antimicrobial properties, and postharvest ethanol dips eliminate most of the fungal and bacterial populations on surface of grapes without impairing bunch appearance or berry firmness.
bacteriostatic properties against growth of several bacteria.55 Although antimicrobial activity of garlic oil represents a promising research area, its use as natural food preservative is not common practice yet. Different natural antimicrobial agents, present in food that could be blended with foods or incorporate into MAP packaging systems are72,73 benzoic acid (cranberries, prunes, cinnamon, cloves), organic acids (acetic, lactic, citric, malic, tartaric, propionic, fumaric), nisin/ bacteriocins (produced by lactic acid bacteria), allyl-isothiocynate (mustard, radish, rape seed), allicin: diallylthiosulphinic acid (garlic, onion), lysozyme: lytic enzyme (plant tissues), ethyl alcohol and CO\textsubscript{2}.

Antioxidants

Antioxidants [acids (citric acid, ascorbic acid, ascorbyl palmitate, sorbic acid, benzoic acid)74 and salts (potassium sorbate, sodium benzoate)] can inhibit or interfere with free radical formation. Dipping of fresh-cut apples, Chinese cabbage, endive, lettuce, melon and pears in solution of ascorbate, erythorbic acid and citric acid reduce enzymatic browning75,76. Acidification can be used to preserve tomato, snap bean and pea etc. Ascorbic acid, H\textsubscript{2}O\textsubscript{2}, edible coatings and MAP, together with low temperature storage are used to inhibit enzymatic browning and increase shelf life of fresh-cut fruits and vegetables77. Li-Qin77 concluded that treatment with ascorbic acid (0.2%) and nitric oxide (5 \textmu M) inhibit browning of fresh-cut peach by protecting cell microstructure and inhibiting PPO and POD activity with nitric oxide the most effective treatment.

Firmness Retainers

Undesirable textural changes in MP products can be reduced by implying Ca salts (Ca chloride, Ca carbonate, Ca lactate, Ca propionate, Ca pectate etc.) because softening rate is related to calcium level in fruit tissues78,79. Application of Ca salts to pears, strawberries, kiwifruits, shredded carrot, honeydew disc, nectarines, peaches and melon help to retain tissue firmness52,80,81. Calcium rigidifies cell wall structure in middle lamella by forming Ca pectate, which retards polygalacturonase activity and preserves structural and functional integrity of membrane systems. Exogenous treatments with calcium chloride (CaCl\textsubscript{2}) dip can reduce browning and flesh softening of zucchini squash slices82. However, CaCl\textsubscript{2} may also cause detectable off-flavor when used at higher levels (>0.5\%). Hernandez-Munoz83 observed that addition of calcium gluconate to chitosan (1\%) coating formulation increase firmness of strawberries during refrigerated storage.

Use of 1-Methylecyclopropene (1-MCP), an ethylene action inhibitor84 and Aminoethoxyvinylglycine (AVG), an ethylene synthesis inhibitor85 may extend shelf life of MP products. 1-MCP is currently formulated as SmartFresh74, a 0.14\% powder for post harvest use in fruit and vegetables. AVG is formulated as ReTain86, containing 15\% (w/w) AVG. Removal of ethylene from storage environment of MP fruits and vegetables can retard tissue softening86. 1-MCP acts best at concentrations of 0.5 nL/l and effect is prolonged. Its effect on fruits and vegetables include inhibiting ripening of tomatoes87, peach88, watermelon89, papaya90, delaying senescence in strawberries91, broccoli92, inhibiting yellowing of cut lettuce93, extending firmness and shelf life of MP apples94,95, papaya96, peach97, pear98 and degreening of oranges99. 1-MCP sensitivity of ripening tomato fruit was transiently negated or enhanced in response to short-term increases or decreases, respectively, in internal ethylene levels100. Sorption of 1-MCP to targets other than ethylene receptors might influence 1-MCP responsiveness. Sorption of 1-MCP at quantities in excess of those expected based on estimated levels of ethylene receptors has been demonstrated for avocado fruit and oil101 and a diverse range of fruits and vegetables102-104. AVG inhibits ethylene synthesis by blocking conversion of methionine to 1-aminocyclopropane-1-carboxylic acid (ACC), precursor of ethylene85. AVG significantly suppresses ethylene production and reduces softening by retarding ripening of peaches105-107 and nectarines108.

Edible coatings have been formulated to prolong shelf life and maintain quality of MP fruits and vegetables by preventing changes in aroma, taste, texture, and appearance109. These coatings are generally made from one or more of four major types of materials [lipids, resins, polysaccharides (cellulose, pectin, starch, alginates, chitosan, gums, carrageenan etc.)93] and proteins110]. Various edible films have been practiced in fruits and vegetables such as whey protein coatings for apple111, potato starch based edible coating on guava112, hydroxypropyl methylcellulose-lipid (HML) edible composite coatings on plum113, whey protein and HML edible composite coatings on fresh-cut apples114 and wheat gluten-based films and coatings on refrigerated strawberries115. Incorporation of ascorbic acid and potassium sorbate (as antimicrobial) is more beneficial than only coating in cut-apple and potato. Edible coating also reduces white blush on peeled carrots by increasing
water vapor resistance116. Edible coating of MP (peeled) grapefruit segment with calcium alginate enhances firmness and control leakage of segment and it improves crispiness of lettuce93.

Presently, fruit and vegetable purees (peach, strawberry, apricot, apple, pear, mango, carrot and broccoli) have been used as alternative components of edible coatings117,118. These films have good barrier quality against gas diffusion, but are poor barriers to water vapor diffusion under certain temperature and RH conditions by creating modified atmosphere. Most of the fruits (mango) contain high levels of carbohydrate, protein, and fat, which are the main components for edible films119. Apple and mango film might therefore be an alternative natural wrapping for maintaining shelf life and quality of MP or fresh-cut apple and mango118.

Effect of Storage Conditions on Quality of Fresh-Cut Produce

Cold Storage

In post harvest life of fruits and vegetables, temperature affects respiration & transpiration rates, and also biological & biochemical reactions7,120. A decrease of 10°C usually decreases respiration rate by a factor of 2 to 3. Exposure to cold temperature following harvest in order to minimize and/or inhibit effects of chilling injury is recognized as one of the principal factors controlling quality of fresh-cut leafy vegetables121. Guidelines for Handling Chilled Foods122 recommend a storage temperature (0-8°C) for salad vegetables depending on their susceptibility to chilling injury. MP products should be refrigerated (0-5°C) to prolong their quality and safety7. Although 0°C is usually desirable temperature for most fresh-cut products, in reality, many of them are shipped and marketed at 5-10°C. Duration of cold storage also has an impact on final product quality (overall sensory quality decline and microbial load increase)10. Chilling injury of fresh-cut products can manifest diverse symptoms. Sliced tomato shows mealess123 and fresh-cut pieces of jicama root exhibits surface browning124. Other symptoms include reduction in firmness, increased rate of electrolytic leakage, changes in texture, increase in soluble solid contents, internal browning, surface lesions, skin darkening, water soaked patches, bleaching, increase in ethylene and CO\textsubscript{2} production125. Most of the chilling injury symptoms result due to lipid membrane phase separations weakened hydrophobic bonding, affecting protein-protein and protein-lipid interactions, and effects on cell signaling processes126,127. Baby spinach leaves have a very high respiration rate and its post-harvest quality are tissue decay and off-odours development. To improve quality, cold storage of fresh-cut baby spinach leaves below 5°C under a reduced O\textsubscript{2} partial pressure combined with moderated CO\textsubscript{2} within packages should be conducted128.

Modified Atmosphere Packaging (MAP)

MAP reduces unwanted metabolic reactions (respiration, water loss) and protects commodities against contamination by microorganisms, thus slowing down the process of physiological ageing20. MAP also inhibits biosynthesis and action of ripening hormone ethylene, slows down various compositional changes associated with ripening (softening, browning, decay etc.), and protects color of green vegetables. It also avoids incidence of chilling injury7. The most common atmosphere consists of reduced O\textsubscript{2} and elevated CO\textsubscript{2} levels; however, some other gases (carbon monoxide, ethylene, propylene, and acetylene) are sometimes included. Gas level within a package ranges: O\textsubscript{2}, 3-5; and CO\textsubscript{2}, 3-10%. Effect of low O\textsubscript{2} and elevated CO\textsubscript{2} are additive, but concentration of gases differ with variety, origin and season. CO\textsubscript{2} (>1%) causes brown strain in Crisphead lettuce and CO\textsubscript{2} (>15%) induce off-flavors in several fruits. On the other hand, extremely reduced O\textsubscript{2} concentration (2%) induces anaerobic respiration and off-odors take place129. Besides O\textsubscript{2} and CO\textsubscript{2}, nitrogen (N\textsubscript{2}) can also be used in MAP. N\textsubscript{2} exhibits little or no antimicrobial activity. N\textsubscript{2} is not soluble in water and prevents package collapse when combined with large concentrations of CO\textsubscript{2}. N\textsubscript{2} is often utilized to displace oxygen in MAP, delaying oxidative and inhibiting aerobic microorganisms130. Quality deterioration of packaged MP products may take place due to improper film selection or flushing protocols, variation in respiration from different cultivars or varieties, seasonal variation and storage duration of products prior to fresh-cut processing16,127. This practice, however, raises a food safety concern that human pathogenic bacteria may transfer through the perforations and result in post-processing contamination of the produce.

Treatment of super atmospheric O\textsubscript{2} is an effective means for both inhibiting microbial growth and enzymatic discoloration and preventing anaerobic fermentation reactions131. Improved effect of super atmospheric O\textsubscript{2}, when combined with increased CO\textsubscript{2} concentrations on fresh-cut vegetables, has been demonstrated32. Yet, negative impact of super atmospheric O\textsubscript{2} on postharvest physiology and product quality is also reported. Super
atmospheric O\(_2\) concentration in packaging has been found to be particularly effective at inhibiting enzymatic discoloration, preventing anaerobic respiration, off-flavor production, and moisture loss and reducing microbial growth\(^{131-134}\). On the other hand, high O\(_2\) combined with high CO\(_2\) in package found effective up to some certain limits\(^{133-138}\). High level of O\(_2\) reduces adverse effects of elevated CO\(_2\) concentrations, allowing them to be used to regulate decay in lettuce\(^{135}\) and grapefruit\(^{133}\). Under controlled storage conditions, use of high O\(_2\) gas mixture\(^{136}\) (O\(_2\), 80-85% + CO\(_2\), 15-20%) enhanced sensory quality and antimicrobial benefits for a wide range of fresh-cut fruits and vegetables. High O\(_2\) combined with high CO\(_2\) has positive effects on color due to inhibition of enzymatic discoloration\(^{133-138}\). Improved quality in super atmospheric O\(_2\) treatment suggests that inclusion of super atmospheric O\(_2\) in bags helped to maintain quality under extremely high CO\(_2\) conditions. Antimicrobial activity of CO\(_2\) at high concentration has been well established\(^{139}\). Jaccsens et al\(^{139}\) found no difference in aerobic psychrotrophic growth in chicory endives between conventional (3 kPa O\(_2\) and 5 kPa CO\(_2\)) and super atmospheric O\(_2\) (95 kPa O\(_2\) and 5 kPa N\(_2\)) MAP, yet a significant growth reduction in packaged celery under the same super atmospheric O\(_2\) MAP condition. Super atmospheric O\(_2\) treatments are also advantageous to perforated packages in reducing aerobic mesophilic growth and eliminating the possibility of post-processing contamination\(^{139}\).

MAP essentially maintains quality of fresh-cut fruits and vegetables by matching oxygen transmission rate (OTR) of packaging film to respiration rate of packaged products; O\(_2\) and CO\(_2\) levels within the package can also changes as a function of area of the film as well as ambient temperature\(^{28}\). To devise suitable MAP systems for particular commodities, it is necessary to tailor the permeability of the film to package design (pillow pack or rigid tray over wrap) and to the rate of tissue respiration\(^{140}\). Shelf-life of shredded lettuce can be doubled with MAP (1-3\% O\(_2\) and 5-6\% CO\(_2\)) at 4°C using 35 µm low density polyethylene\(^{141}\). Some alternative non-conventional gas mixtures for active MAP of fresh-cut products, like high O\(_2\) levels and N\(_2\)O or noble gases, might be favorable for keeping quality\(^{142}\). High O\(_2\) extends shelf life of fresh-cut vegetables by inhibiting enzymatic discoloration, preventing anaerobic fermentation, and reducing aerobic and anaerobic microbial growth\(^{143}\). O\(_2\) levels (> 70 kPa) have been recommended for MAP of fresh-cut vegetables to preserve sensory and microbial quality\(^{139}\). N\(_2\)O that has 77\% solubility in fruit cell, although its absorption in tissues is completely reversible has a direct effect by extending shelf life of MP products\(^{144}\). In this way, apple\(^{143}\) and kiwifruit\(^{144}\) slices maintained their fresh quality for up to 12 days at 4°C when packed under MAP with decreased O\(_2\) and increased CO\(_2\) levels (both at 5.07 kPa), balanced with N\(_2\)O.

Moderate Vacuum Packaging (MVP)

One interesting MAP method is moderate vacuum packaging (MVP)\(^{145}\), where respiring produce is packed in a rigid airtight container (atmospheric pressure, < 40 kPa; temp., 4-7°C). Initial gas composition is that of normal composition of air (21\% O\(_2\), 0.04\% CO\(_2\) and 78\% N\(_2\)) but at a reduced partial gas pressure. Lower oxygen content stabilizes produce quality by slowing down the metabolism of produce and the growth of spoilage microorganisms. Gorris et al\(^{145}\) found that MVP improved microbial quality of red pepper, chicory endive, sliced apple and sliced tomato, the sensory quality of apricot and cucumber and the microbial and sensory quality of mung bean sprout and a mixture of cut vegetables.

Equilibrium Modified Atmospheric Packaging (EMAP)

Equilibrium modified atmospheric packaging (EMAP) is another effective method of packaging fresh-cut fruits and vegetables and used to prolong shelf life of products. An EMAP is established inside the package, when O\(_2\) transmission rate of packaging film is matched to O\(_2\) consumption rate of packaged commodity\(^{3,134}\). In addition to classic parameters (temperature and O\(_2\) level), other factors (degree of processing including decontamination) and time between processing and packaging must also be taken into consideration to establish an optimal EMAP for particular fresh-cut commodities.

Active or Smart Packaging

Active packaging is a type of packaging that changes the condition of packaging to extend shelf life or improve safety or sensory properties while maintaining quality of food\(^{72}\). Cameron et al\(^{146}\) introduced concept of sense-and-response technology, wherein some components of package would sense a signal such as an increase in temperature and initiate a marked increase in permeability to compensate for perceived change signal\(^{47}\). Some tissues produce ethanol on fermentation when lower O\(_2\) limit is surpassed, a truly smart package will continuously monitor ethanol and adjust O\(_2\)
permeability. This level of control may never be applicable for small consumer package due to economic considerations. However, smart packaging techniques may be appropriate for longer containers used for shipments by truck, ship, or air. To control undesirable microorganisms on foods, antimicrobial substances can be incorporated in or coated onto food packaging materials148. Principle action of antimicrobial films is based on the release of antimicrobial entities, some of which could pose a safety risk to consumers if release is not tightly controlled within packaging material49.

Conclusions
The demand for fresh-like MP fruits and vegetables have increased; mainly due to consumer’s concerns about health and convenience particularly during last decade150,151. A characteristic feature of MPg is the need for an integrated approach, where raw material, handling, processing, packaging, and distribution must each be properly managed to achieve extended shelf life of the produce. Siddiqui et al152 recommended that 6-Benzylaminopurine (10 ppm) could be a useful method to improve shelf life, organoleptic quality, and health promoting compounds of fresh-cut broccoli florets during storage at 6±1°C at commercial level. Much research is still to be done to develop MP fruits and vegetables products with high acceptability, high sensory quality, microbiological safety and nutritional value. Strict temperature control of MP produce is of eminent importance. More information on growth of pathogenic bacteria or nutritional changes in MP fruits and vegetables with longer shelf life is needed. It is probable that in future, fruits and vegetables intended for MPg will be cultivated under specified controlled conditions and that plant genetics will develop selected and created cultivars or hybrids adapted to specific requirements of MPg142. New packaging systems, particularly active packaging and edible films, as well as more permeable plastic films, which better match with the respiration of fruits and vegetables, are active areas for development. Regulatory issues associated with novel processing technologies, and safety assessment of process-specific effects needs to be carried out.

References

82 Izumi H & Wantada A E, Calcium treatment to maintain quality of zucchini squash slices, J Food Sci, 60 (1995) 789-793.

101 Dauny P T, Joyce D C & Gamby C, 1-Methylcyclopropene
98 Arias E, López-Buesa P & Oria R, Extension of fresh-cut
96 Ergun M, Huber D J, Jeong J & Bartz A, Extended shelf life and
93 Tay S L & Perera C O, The effect of 1-MCP and edible coatings
92 Ku V V V & Wills R B H, Effect of 1-methylcyclopropene on
89 Mao L C, Karakurt Y & Huber D J, Incidence of water-soaking
88 Hayama H, Ito A & Kashimura Y, Effect of 1-methylcyclopropee
87 Leliever J, Latche A, Jones B, Bouzayen M & Pech J, Ethylene
86 Abe K & Watada A E, Ethylene absorbent to maintain quality
75 Postharvest Biol Technol
1-8.
internal ethylene levels,
ripening in response to 1-methylcyclopropene is influenced by
ethylene and 1-methylcyclopropene on the postharvest
treatment after harvest,
Hort Sci
127-132.
the ethylene antagonist 1- Methylcyclopropene,
Technol
398-400.
softening of ‘Akatsuki’ peach,