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Understanding the protein structures is crucial, as it is involved in every cellular activity. Several experimental 

techniques, such as X-Ray crystallography, nuclear magnetic resonance and electron microscopy are available to gain 

insight about the structure and function of a protein molecule. Gigantic data on protein structural and sequential information 

is deposited in various repositories regularly which provide us the scope for more theoretical studies. Hydrophobicity always 

plays a vital role in tertiary structure formation and behavior of a protein molecule. This study focuses on elucidating 

influence of several physicochemical properties on hydrophobicity of AGC kinase proteins. AGC kinase superfamily is 

selected due to its tremendous structural and functional variability and sequence data availability. A combined data mining 

and stochastic approach confirmed that out of 47 parameters, transmembrane tendency influences the target variable most, 

followed by percent buried residues, GRAVY (Grand Average Hydropathicity) and aliphatic index. Calculating the influence of 

different physicochemical parameters and their interrelation will aid tremendously in the future of protein science. 
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Protein folding continues to lure the researchers 

across the globe for its complex multidimensional 

nature. How a protein attains its particular native 

conformation as a product of the regular expression  

of a gene remains a paradox
1
. Numerous factors 

support a protein molecule to achieve its native and 

stable conformation successfully on gene expression 

invariably. The “hydrophobic effect” is considered  

as one of the major driving force among all sundry 

factors in protein folding
2
. 

The upsurge in structural and sequence data 

submission in public domain repository and  

the burgeoning rise in modern data analysis 

methodologies have provided a major thrust to  

studies aiming at seeking molecular insights into 

behavior and interaction of proteins. It is suggested 

that surface hydrophobicity contributes to protein-

protein recognition
3
. Hydrophobicity plays an 

important role in determining protein disorder
4
.  

This key factor has help directly or indirectly  

in developing several computing tools for protein 

property calculation
5
. Hydrophobic residues tend  

to be embedded in the core of a protein molecule, 

whereas hydrophilic residues prefer the surface  

region and interact with the solvent molecule
4-7

.  

These hydrophobic residues residing in the core 

exhibit greater conservation. 

In order to appreciate and comprehend the 

complexity of protein-protein interaction, inter-

relationship of affecting physicochemical factors 

needs to be analyzed intensely. Real time calculations 

involve dynamics simulations to mimic the cellular 

environment and understand the behavior of the 

molecules in aqueous solution. Molecular dynamics 

calculations provide the answers to such problem
8
. 

Dynamics studies increase the complexity in 

computational calculations and warrant the need  

for alternative approaches for simplification of the 

equations involved
9
. This can be made possible by 

considering a quantified view of interrelationship 

among properties and can aid in achieving more 

realistic outputs.  

With time, a tremendous improvement has been 

observed in the data analyses methodologies and 

statistical analyses. Several algorithms and computer 

programs are now available which can handle ample 

amount of data and perform efficient analysis. 

Different algorithms are available which can mimic 
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the natural process (popularly known as “evolutionary 

algorithms”), such as neural networks, genetic 

algorithm and ant colony optimization are extensively 

used for protein data analysis across the globe
10-12

. 

Besides these methodologies, decision based trees 

also occupy a prominent place in data classification 

and understanding the behavior of complex biological 

data set
13

. Recent developments in bioinformatics  

and data mining technology
14-16

 may aid in 

approaching this multidimensional problem with a 

new perspective by unveiling some unique evidences 

or clues on the pattern or the interrelationship of  

the complex factors. 

AGC kinase superfamily displays functional and 

structural divergence
17

. Data mining techniques  

have been used in past to facilitate generation  

of knowledge on interplay of physicochemical 

parameters in protein families
18,19

. Most of the  

AGC kinases play a vital role in cell signaling which 

is manifested by their existence as membrane 

proteins. The hydrophobicity of these kinases aids  

in achieving proper conformation and function of 

these protein kinases. Therefore, understanding the 

influence of different parameters on hydrophobicity  

is essential. To be able to perform their biological 

function, proteins fold into one or more specific 

spatial conformations, driven by a number of  

noncovalent interactions such as hydrophobicity. 

In this investigation, we have assessed the 

relationship and interdependence of various 

parameters that help the protein to attain their 

structural and functional specificity of various  

protein kinases belonging to AGC kinase  

superfamily, employing a simplistic stochastic 

approach. The objective of this study is to dissect  

the impact of several physicochemical parameters on 

hydrophobicity in AGC kinase family. The sequences 

have been collected from a wide spectrum of 

organisms and thus, chance of obtaining biased  

result is eliminated. Though the apparent variation 

prevails in the primary data sequences, yet there 

remains a strong opportunity of generating association 

rules using data mining technology on account of 

diverse source organisms. 
 

Methodology 
AGC kinase protein family was selected as  

the target protein family for this study and all  

the sequence data was extracted from NCBI 

(http://www.ncbi.nlm.nih.gov)
20

 protein sequence 

database. The collected raw data sequences were 

filtered to ensure elimination of partial sequences and 

minimizing redundancy present in the initial dataset. 

The overall workflow is represented in Fig. 1. 
 

Sequence collection 

Total 1247 sequences belonging to different source 

organisms ranging from prokaryotes to eukaryotes 

were collected. A strict filtering process was adopted 

for removing any kind of redundancy in the dataset. 

After initial filtering, 656 sequences were obtained. 

The variation in number of amino acid residues in 

considered proteins is shown in Fig. 2. 
 

Extraction of features 

Physicochemical properties of a protein  

provide proper insight of the structural and  

functional behavior of the molecule. To obtain  

data regarding certain physicochemical features,  

standard EXPASY tools, Protscale (http://expasy 

org/tools/protscale.html) and Protparam (http://expasy 

org/tools/protparam.html)
21

 were employed. Total 47 

parameters that are known to influence structural and 

functional behavior of a protein were calculated by 

these servers and considered for further analyses. 

 
 

Fig. 1—Strategic workflow of the study 

 

 
 

Fig. 2—Scatter plot of the number of amino acids present in the 

sequences considered in this study 
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Protparam calculated parameters were considered 

directly, whereas computed average scales were 

considered from the Protscale server for the study.  

All the parameters considered for this study are listed 

in Table 1. 
 

Data analysis 

Classification and regression trees are ideally 

suited for the analysis of complex data. For such  

data, we require flexible and robust analytical 

methods, which can deal with non-linear 

relationships, high-order interactions, and missing 

values. CART is a robust decision–tree based tool  

for data mining and predictive modeling. It was 

applied for analyzing the obtained data.  
 

Selection of target and predictor variables 

Out of 47 parameters, hydrophobicity was 

considered as the target variable and all other 

parameters were considered as predictor variables. 

Since target variable hydrophobicity is continuous in 

nature, regression tree was selected for analysis. 

During the parameter adjustment of the tool, no priors 

were selected and default parameters were used for 

the penalty, as there were no missing values and bias 

in the data. Least square splitting method was applied 

for this study. V-fold cross-validation was selected  

for testing the obtained trees. This method is highly 

accurate and has advantage of not requiring a 

separate, independent dataset for assessing the 

accuracy and the size of the tree. V-fold cross 

validation performs partitioning of data into  

equal-sized segments and holds out one segment  

at a time for test purposes.  
 

Statistical calculation  

Statistical analysis was carried out by SYSTAT 

software (http://www.systat.com/Default.aspx)
22

. The 

analysis was performed by selecting the  

correlation option, where Pearson’s correlation 

coefficient (rxy) was calculated for the variables  

using the following formula.  
 

 
 

where  and  are the sample means of X and Y,  

Sx and Sy are the sample standard deviations of X  

and Y and the sum is from i = 1 to n. The correlation 

coefficients were calculated for each parameter with 

other parameters. 

 

Results and Discussion 
Data mining techniques have proved their 

efficiency as meaningful technology long back. 

Enormous literature supports their ability to solve 

complex non-linear classification and clustering 

problems. 
 

Classification and regression analysis 

Decision tree learning is a common method used  

in data mining. A decision tree is a flow chart of 

diagram representing a classification system or 

predictive model. The tree is structured as a sequence 

or simple questions and the answers to these questions 

trace a path down the tree. A decision tree can be 

described also as the combination of mathematical 

and computing techniques to aid the description, 

categorization and generalization of a given set of 

data. CART
23

 is known to be one of the best data 

mining tool in recent times and finds enormous 

application in complex biological data analysis, 

especially in molecular biology
24

, microbiology
25,26

, 

medical sciences
27,28

, genomics
29

, proteomics
30

 and 

other important areas. 

Table 1—Calculated parameters with respective tools applied 

S.No Parameters obtained from Protscale calculation  

1 Molecular weight 

2 Number of codon(s) 

3 Bulkiness 

4 Polarity (Zimmerman) 

5 Refractivity 

6 Hydrophobicity (Kyte & Doolittle) 

7 Transmembrane tendency 

8 % Buried residues 

9 % Accessible residues 

10 Average area buried 

11 Average flexibility 

12 α  helix(Chou & Fasman) 

13 β sheet (Chou & Fasman) 

14 β turn (Chou & Fasman) 

15 Coil (Deleage & Roux) 

16 Total β strand 

17 Antiparallel β strand 

18 Parallel β strand 

19 Amino acid composition 

20 Relative mutability 

 Parameters obtained from Protparam calculation 

1 Theoretical pI (Isoelectric point) 

2 Individual amino acid composition 

3 Total number of negatively charged residues 

4 Total number of positively charged residues 

5 Extinction coefficients 

6 Instability index 

7 Aliphatic index 

8 Grand Average of Hydropathicity (GRAVY) 
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Optimal tree with 29 (Tree no. 102 in Annexure I) 
nodes was obtained with cross-validated error of 
0.32673 ± 0.02336, resubstitution error of 0.15574 
and complexity of 0.28214. The full grown tree 

topology is represented in Fig. 3. When tree with 29 
nodes was considered, parameters like grand average 
hydropathicity (GRAVY), polarity, transmembrane 
tendency, relative mutability, aliphatic index, 
antiparallel β strand, percent buried residues appeared 
into the decision tree development. Using this 

decision tree, the impact of various parameters on 
hydrophobicity was assessed, estimated and deduced 
to numerical representation.  

Figure 4A depicts the obtained error curve along 
with the relative error observed for the optimal tree 
(0.327) with 29 nodes. The full-grown tree represents 

136 nodes with a relative error of 0.398. The terminal 
nodes sorted by hydrophobicity (Kyte & Doolittle)  
are represented in Fig. 4B. 
 

Variable importance 

In this rigorous regression analysis, the variable 
importance determined by the algorithm clearly 
indicates the impact of several variables on the  
target variable. Variable importance is determined by 
looking at every node in which a variable appears  
and taking into account how good a splitter it is. 
Variable importance ranking is a summary of a 
variable’s contribution to the overall tree, when all 
nodes are examined. Variables earn credit towards 
their importance in a CART tree in two ways, as 
primary splitters that actually split a node, and as 
surrogate splitters (backup splitters to be used,  
when the primary splitter is missing). Variable 
importance of various parameters on hydrophobicity 
was obtained using CART (Table 2).  

Out of all, predictor variables transmembrane 
tendency, percent buried residues, GRAVY and 
aliphatic index were found to influence 
hydrophobicity in descending order. 

 
Association rules generation 

Association rules were generated using a 136-node 

tree (maximal grown tree). Tree with least complexity 

and minimum relative resubstitution error was 

considered for obtaining association rules. For 

example: 

Rule (136
th
 node of 136 nodes tree), IF 

“transmembrane tendency > -0.26975 and parallel 

beta strand > 1.316 and phenylalanine > 3.3” THEN 

“hydrophobicity is 0.712643” (maximum in this case) 

(In Annexure). 

Rule (1
st
 node of 136 nodes tree), IF “grand average 

of hydropathicity < = -0.351 and transmembrane 

tendency <= -0.7605 and % buried residues < = 

5.58325, and beta sheet < = 0.93025” THEN 

“hydrophobicity is -1.13063” (minimum in this case) 

(In Annexure). 
Rule (70

th
 node of 136 nodes tree), IF  

“grand average of hydropathicity > -0.351 and 
transmembrane tendency > -0.560725 & <= -0.41575 
and % buried residues > 6.064 and parallel beta  
strand <= 1.14375 and phenylalanine <= 4.4 and 
threonine > 5 and tryptophan > 0.25 and proline  
<= 4.6 and instability index > 24.15 and coil  
(Deleage & Roux) > 0.98” THEN “hydrophobicity is 
-0.216667” (intermediate in this case) (In Annexure). 
 
Statistical analysis   

SYSTAT package was used to validate the  

CART analysis. Hydrophobicity was selected as the  

target variable and rest of the parameters was selected 

 
 
Fig. 3—Obtained tree topology for hydrophobicity (Kyte & Doolittle) 

target against all other parameters as predictor 

 
 

Fig. 4—(A): Obtained error curve where relative error (X axis) 
versus number of nodes (Y-axis) is represented; and (B): Terminal 
nodes sorted by target variable prediction. These terminal nodes 
are linked to association rules, which are used to define the 
interrelationship among properties 
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as independent variables. The correlation between 

hydrophobicity and transmembrane tendency was 

0.774 (maximum) (Annexure 2) in this case, followed 

by percent buried residues, GRAVY, aliphatic index, 

total β strand which exerted a positive influence  

on it. Other parameters β turn, lysine, total number  

of negatively charged residues, total number of 

positively charged residues and polarity showed 

negative correlation in the statistical calculations.  

Both the analyses performed by CART and 

SYSTAT suggested the importance of tansmembrane 

tendency, percent buried residues, GRAVY and 

aliphatic index as the most influential factors for  

the hydrophobicity of the protein molecules in  

AGC protein kinase family. 

Hydrophobicity is known to be an important 

determinant of transmembrane tendency. This study 

attempts at gaining an insight on the influence  

of various sequence and structural features on an 

inherent property of proteins viz. hydrophobicity. 

CART yielded association rules, which can assist  

in decision making process by serving as “rule of 

thumb”, when applied to a huge dataset in crucial 

experimental procedures, where knowledge of 

parametric influence on transmembrane tendency  

and hydrophobicity is vital. 

Conclusion 
Numerous statistical analyses in the past  

have reinstated the complexity of protein folding  

problem. In essence, protein structure depends on  

its physiochemical properties. This study paves a way 

for understanding several physicochemical parameters 

in detail and their influence on a particular  

property stochastically. A case on AGC kinase  

protein superfamily was taken into account owing  

to their functional and structural diversity. Similar 

kind of approach can be implemented in more 

complex and larger dataset.  

Understanding how physiochemical properties 

influence protein folding is a major challenge.  

An interdisciplinary approach comprising of both 

experimental and computational methodologies is 

needed to solve this paradox
31

. Numerous efforts  

have been made to understand the impact of 

hydrophobicity on protein folding
32

. We have 

investigated the impact of different physicochemical 

parameters on hydrophobicity and generated 

simplified association rules based on the 

quantification of their effects. This will help in 

understanding and quantifying the contribution of 

various physicochemical parameters involved in 

protein folding. 

Table 2—Importance of Variables as elucidated using CART 

S.No. Variable Score S.No. Variable Score 

1 Transmembrane tendency 100 24 Proline 2.55 

2 Percent Buried Residues 89.78 25 Average flexibility  2.49 

3 Grand average of hydropathicity  83.1 26 Instability index 2.47 

4 Aliphatic index 69.74 27 Coil (Deleage & Roux)  2.21 

5 Total β strand  56.58 28 Relative mutability  2.16 

6 β sheet (Chou& Fasman)  45.89 29 Total number of positive charged residues 2.16 

7 Parallel β strand  31.63 30 α helix(Chou & Fasman) 2.14 

8 Alanine 11.2 31 Antiparallel beta strand  2.12 

9 Lysine  9.41 32 Isoleucine 2.12 

10 Polarity (Zimmerman)  7.35 33 Theoretical pI 2.11 

11 Valine  6.33 34 Phenylalanine 1.77 

12 Amino acid composition  5.23 35 Tyrosine 1.74 

13 Refractivity  5.21 36 Cysteine 1.71 

14 Histidine 4.91 37 β turn (Chou & Fasman) 1.7 

15 Average area buried  4.76 38 Glycine 1.69 

16 Leucine 4.49 39 Arginine 1.67 

17 Molecular weight  3.61 40 Serine 1.34 

18 Aspartic acid  3.56 41 Number of codon (s) 1.31 

19 Bulkiness 3.27 42 Extinction coefficient 1.26 

20 Glutamine 3.16 43 Metheonine 1.19 

21 Total number of negatively charged residues 3.14 44 Threonine 1.14 

22 Asparagine 2.73 45 Glutamic acid 1.07 

23 Percent Accessible residues  2.71 46 Tryptophan 0.51 
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This kind of statistical insight will enable us  
to understand the different structural and functional 
properties of a protein molecule and quantify or  
rank them according to their influence on a parameter, 
thus enlightening the future path for in silico 

elucidation of roles of diverse factors in determining 
the crucial properties and how such knowledge can  
be exploited in several aspects of protein folding and 
enzyme engineering. 
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ANNEXURE 1—Number of trees along with cross-validation error, resubstitution error and complexity 

Tree 

No 

Terminal 

nodes 

Cross-validated 

relative error 

Resubstitution 

relative error 

Complexity Tree 

No 

Terminal 

nodes 

Cross-validated 

relative error 

Resubstitution 

relative error 

Complexity 

1 136 0.39773 ± 0.02914 0.03347 0.00000 58 78 0.36387 ± 0.02714 0.06378 0.09102 

2 135 0.39800 ± 0.02915 0.03350 0.00235 59 77 0.36270 ± 0.02707 0.06478 0.09209 

3 134 0.39782 ± 0.02914 0.03354 0.00405 60 76 0.36267 ± 0.02705 0.06579 0.09362 

4 133 0.39763 ± 0.02912 0.03361 0.00651 61 75 0.36328 ± 0.02706 0.06681 0.09382 

5 132 0.39730 ± 0.02911 0.03374 0.01227 62 74 0.36234 ± 0.02702 0.06784 0.09562 

6 131 0.39769 ± 0.02913 0.03390 0.01441 63 73 0.36119 ± 0.02687 0.06889 0.09735 

7 130 0.39726 ± 0.02911 0.03408 0.01694 64 72 0.35839 ± 0.02670 0.06997 0.09905 

8 129 0.39766 ± 0.02913 0.03427 0.01745 65 71 0.35770 ± 0.02666 0.07107 0.10222 

9 128 0.39780 ± 0.02913 0.03449 0.01970 66 70 0.35745 ± 0.02665 0.07221 0.10539 

10 127 0.39646 ± 0.02904 0.03473 0.02234 67 69 0.35364 ± 0.02646 0.07337 0.10652 

11 126 0.39626 ± 0.02905 0.03499 0.02467 68 67 0.35106 ± 0.02644 0.07572 0.10874 

12 125 0.39590 ± 0.02904 0.03528 0.02633 69 66 0.35062 ± 0.02643 0.07694 0.11299 

13 124 0.39570 ± 0.02903 0.03558 0.02800 70 65 0.34674 ± 0.02595 0.07817 0.11331 

14 123 0.39572 ± 0.02903 0.03589 0.02878 71 64 0.34700 ± 0.02601 0.07950 0.12313 

15 122 0.39572 ± 0.02902 0.03621 0.02898 72 63 0.34705 ± 0.02602 0.08087 0.12681 

16 121 0.39572 ± 0.02902 0.03652 0.02921 73 62 0.34672 ± 0.02609 0.08226 0.12773 

17 120 0.39572 ± 0.02902 0.03684 0.02934 74 61 0.34138 ± 0.02573 0.08377 0.13950 

18 119 0.39561 ± 0.02900 0.03716 0.02988 75 60 0.34223 ± 0.02572 0.08531 0.14233 

19 118 0.39508 ± 0.02898 0.03751 0.03169 76 59 0.34223 ± 0.02572 0.08686 0.14367 

20 117 0.39517 ± 0.02895 0.03787 0.03339 77 58 0.34086 ± 0.02557 0.08843 0.14512 

21 116 0.39481 ± 0.02898 0.03824 0.03464 78 56 0.34372 ± 0.02553 0.09190 0.16034 

22 115 0.39481 ± 0.02898 0.03863 0.03600 79 55 0.34465 ± 0.02558 0.09366 0.16255 

23 114 0.39495 ± 0.02899 0.03902 0.03602 80 53 0.34454 ± 0.02557 0.09722 0.16425 

24 113 0.39468 ± 0.02899 0.03942 0.03680 81 52 0.33679 ± 0.02507 0.09900 0.16462 

25 112 0.39392 ± 0.02898 0.03983 0.03830 82 51 0.33687 ± 0.02522 0.10092 0.17706 

26 111 0.39282 ± 0.02889 0.04029 0.04159 83 49 0.33647 ± 0.02528 0.10487 0.18250 

27 110 0.39326 ± 0.02889 0.04074 0.04197 84 48 0.33633 ± 0.02520 0.10700 0.19669 

28 109 0.39243 ± 0.02885 0.04120 0.04270 85 47 0.34084 ± 0.02573 0.10920 0.20329 

29 108 0.39175 ± 0.02882 0.04169 0.04531 86 46 0.34023 ± 0.02572 0.11140 0.20364 

30 107 0.39083 ± 0.02890 0.04220 0.04670 87 44 0.33933 ± 0.02569 0.11587 0.20663 

31 106 0.38786 ± 0.02858 0.04272 0.04818 88 43 0.33839 ± 0.02571 0.11813 0.20838 

32 105 0.38592 ± 0.02860 0.04330 0.05391 89 42 0.33553 ± 0.02561 0.12046 0.21546 

33 104 0.38328 ± 0.02849 0.04390 0.05495 90 41 0.33465 ± 0.02556 0.12286 0.22132 

34 103 0.38255 ± 0.02850 0.04452 0.05739 91 40 0.33508 ± 0.02564 0.12528 0.22390 

35 102 0.38255 ± 0.02850 0.04514 0.05742 92 39 0.33502 ± 0.02559 0.12775 0.22829 

36 101 0.38110 ± 0.02840 0.04576 0.05769 93 38 0.33434 ± 0.02558 0.13028 0.23338 

37 100 0.38069 ± 0.02839 0.04642 0.06078 94 37 0.32978 ± 0.02530 0.13281 0.23358 

38 99 0.38031 ± 0.02842 0.04708 0.06082 95 36 0.33069 ± 0.02517 0.13541 0.24030 

39 97 0.37929 ± 0.02829 0.04842 0.06210 96 35 0.32862 ± 0.02505 0.13807 0.24594 

40 96 0.37801 ± 0.02817 0.04911 0.06332 97 34 0.32830 ± 0.02483 0.14088 0.25935 

41 95 0.37840 ± 0.02819 0.04980 0.06398 98 33 0.32896 ± 0.02494 0.14379 0.26896 

42 94 0.37843 ± 0.02819 0.05049 0.06407 99 32 0.32927 ± 0.02494 0.14674 0.27312 

43 93 0.37754 ± 0.02816 0.05120 0.06475 100 31 0.32927 ± 0.02494 0.14971 0.27393 

44 92 0.37539 ± 0.02807 0.05190 0.06536 101 30 0.32919 ± 0.02481 0.15269 0.27506 

45 91 0.37528 ± 0.02801 0.05262 0.06587 102** 29 0.32673 ± 0.02336 0.15574 0.28214 

46 90 0.37481 ± 0.02794 0.05338 0.07029 103 28 0.33146 ± 0.02279 0.15926 0.32492 

47 89 0.37417 ± 0.02793 0.05414 0.07058 104 27 0.32957 ± 0.02265 0.16304 0.34955 

48 88 0.37344 ± 0.02789 0.05492 0.07160 105 26 0.32958 ± 0.02261 0.16692 0.35864 

49 87 0.37175 ± 0.02779 0.05571 0.07319 106 25 0.33034 ± 0.02255 0.17088 0.36523 

50 86 0.37222 ± 0.02781 0.05650 0.07362 107 24 0.33034 ± 0.02255 0.17494 0.37539 

51 85 0.36982 ± 0.02739 0.05732 0.07492 108 23 0.33213 ± 0.02246 0.17907 0.38116 

52 84 0.36860 ± 0.02730 0.05817 0.07887 109 22 0.33344 ± 0.02218 0.18359 0.41775 

53 83 0.36873 ± 0.02736 0.05906 0.08238 110 21 0.33604 ± 0.02225 0.18813 0.42012 

54 82 0.36917 ± 0.02744 0.05998 0.08478 111 20 0.33584 ± 0.02200 0.19302 0.45092 

55 81 0.36775 ± 0.02735 0.06090 0.08480 112 19 0.33625 ± 0.02202 0.19793 0.45379 

56 80 0.36812 ± 0.02737 0.06184 0.08727 113 18 0.33625 ± 0.02202 0.20287 0.45666 

57 79 0.36631 ± 0.02725 0.06279 0.08816 114 17 0.33618 ± 0.02200 0.20782 0.45761 

(Contd.)
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ANNEXURE 1—Number of trees along with cross-validation error, resubstitution error and complexity 

Tree 

No 

Terminal 

nodes 

Cross-validated 

relative error 

Resubstitution 

relative error 

Complexity Tree 

No 

Terminal 

nodes 

Cross-validated 

relative error 

Resubstitution 

relative error 

Complexity 

115 16 0.33419 ± 0.02195 0.21298 0.47625 123 8 0.36106 ± 0.02228 0.27883 1.56528 

116 15 0.33407 ± 0.02188 0.21823 0.48506 124 7 0.37110 ± 0.02250 0.29782 1.75451 

117 14 0.32737 ± 0.02144 0.22386 0.51996 125 6 0.38027 ± 0.02274 0.31982 2.03266 

118 13 0.33052 ± 0.02116 0.23024 0.58941 126 5 0.38994 ± 0.02300 0.34695 2.50587 

119 12 0.33288 ± 0.02139 0.23704 0.62803 127 4 0.42414 ± 0.02377 0.37493 2.58519 

120 11 0.33556 ± 0.02157 0.24396 0.63938 128 3 0.48132 ± 0.02559 0.44395 6.37653 

121 10 0.33446 ± 0.02109 0.25232 0.77276 129 2 0.54566 ± 0.02579 0.53349 8.27122 

122 9 0.33746 ± 0.02131 0.26189 0.88379 130 1 1.00001 ± 0.00002 1.00000 43.09816 

 

ANNEXURE 2—Correlation between dependent and independent variables 

Parameters Hydrophobicity (Kyte & Doolittle) 

Molecular weight -0.274 

Number of codon(s) 0.180 

Bulkiness 0.159 

Polarity (Zimmerman) -0.376 

Refractivity -0.200 

Hydrophobicity (Kyte & Doolittle) 1.000 

Transmembrane tendency 0.774 

% Buried residues 0.691 

% Accessible residues -0.124 

Average area buried 0.043 

Average flexibility -0.022 

α helix (Chou & Fasman) 0.066 

β sheet (Chou & Fasman) 0.229 

β turn (Chou & Fasman) -0.462 

Coil (Deleage & Roux) -0.140 

Total β strand 0.500 

Antiparallel β strand 0.247 

Parallel β strand 0.678 

Amino acid composition 0.312 

Relative mutability -0.085 

Theoretical pI -0.007 

Alanine 0.461 

Arginine 0.218 

Aspargine -0.250 

Aspartic acid -0.204 

Cysteine -0.262 

Glutamine -0.026 

Glutamic acid -0.293 

Glycine 0.197 

Histidine -0.149 

Isoleucine 0.027 

Leucine 0.475 

Lysine -0.501 

Metheonine -0.092 

Phenylalanine -0.273 

Proline -0.060 

Serine -0.092 

Threonine 0.050 

Tryptophan -0.036 

Tyrosine -0.314 

Valine 0.179 

Total number of negatively charged residues -0.135 

Total number of positively charged residues -0.160 

Extinction coefficients -0.088 

Instability index -0.207 

Aliphatic index 0.646 

Grand average of hydropathicity (GRAVY) 0.662 
 


