Electro catalytic amorphous nickel alloy

V S Muralidharan
Central Electrochemical Research Institute, Karaikudi 630 006, India

Received 21 March 2006; revised received 11 September 2006; accepted 5 November 2006

Nickel and nickel based alloy deposits are used as cathode materials for hydrogen evolution. Watt’s bath modified with thiourea was used to deposit Ni-S and Ni-S-Co alloys. In presence of thiourea, Watt’s bath offered amorphous Ni-S alloy. In presence of CoCl₂ and thiourea, amorphous Ni-S-Co alloy was formed. Hydrogen evolution reaction occurred faster on amorphous Ni-S-Co alloy compared to amorphous Ni-S alloy from 28 wt% NaOH. Hydrogen evolution reaction rate increased with temperature on these amorphous alloys. A fast Volmer followed by slow Heyrovsky reaction occurred on the surfaces of these alloys. Heat treatment of amorphous Ni-S-Co alloy decreased the electro catalytic activity due to the disturbance in the amorphous structure.

Keywords: Amorphous alloy, Electro catalysis, Hydrogen evolution, Ni-S-Co alloy
IPC Codes: C22C45/04, C25B1/44

Hydrogen is an ideal eco-friendly source of energy. In order to use it as the regular source of energy many new methods are created among which water electrolysis is one. Nickel and nickel based alloys are chosen as cathode materials. Nickel sulphide containing molybdate¹ was used as a cathode. Nickel-S alloy was deposited from nickel ammonium sulphate bath. When sodium thiosulphate was added to the bath, 13% sulphur in the deposit was obtained². Thiourea was also used as a source of sulphur³. Thiourea was also employed to get 10 to 20 wt% sulphur in the Ni-S alloy deposit⁴,⁵. The enhanced electrochemical activity on these alloy was due to adsorbed hydrogen.

The present paper deals with the deposition of amorphous Ni-S and Ni-S-Co alloys from modified Watt’s bath and evaluation of their catalytic activity for hydrogen evolution reaction.

Experimental Procedure
Electro deposition was carried out on a mild steel substrate. The substrates (5 × 2 × 0.025 cm) were polished with fine grid paper and degreased with trichloroethylene. They were electro cleaned cathodically for 2 min in an alkaline solution composed of 35 gpl NaOH, 25 gpl Na₂CO₃ and 10 gpl trisodium phosphate at 343 K with a current density of 3 A/dm². They were washed in running water and dipped for 5 s in 5% H₂SO₄ solution. Finally thorough washing and drying were done.

Nickel sulphur electrodeposits were obtained from a modified Watt’s bath of 200 gpl NiSO₄·7H₂O, 40 gpl NiCl₂·6H₂O, 35 gpl boric acid and 100 gpl thiourea. The pH of the bath (4.3-4.7) was maintained and monitored by digital pH meter. Nickel sulphur cobalt electrodeposits were also deposited from the above bath with various concentrations of CoCl₂ (10-30) gpl. Cathode potentials during electro deposition was monitored using a Saturated Calomel Electrode. The alloy surfaces deposited on copper substrates were characterized by JEOL X-ray diffraction unit and at selected points on the surface, cobalt and sulphur concentrations were determined by EPMA.

Hydrogen evolution reaction was studied in 28 wt% NaOH solutions. The electrochemical experiments were studied using a PARC model 173 potentiostat/galvanostat. One cm² area of the Ni-S and Ni-S-Co alloy deposits were used as working electrodes. An Hg/HgO/OH⁻ electrode was used as a reference along with a large platinum foil as auxiliary electrodes. To minimize IR drop, a Luggin capillary was used. A pre electrolysed 28wt% NaOH solution was used.

Results
Electro deposition
Ni-S alloy electro deposition on mild steel was carried out from modified Watt’s bath. Current density increased the % sulphur content in the alloy (Table 1). When the alloy deposition current density was 10 mA/cm², weakly crystallized Ni₃S₂ was seen on the Ni-S alloy. While at 30 mA/cm², some weak peaks corresponding to nickel appeared. At an
Table 1 — Variation of elemental composition with current density on amorphous Ni-S alloy

<table>
<thead>
<tr>
<th>Current density (mA/cm²)</th>
<th>%S</th>
<th>%Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>19.4</td>
<td>80.6</td>
</tr>
<tr>
<td>20</td>
<td>19.9</td>
<td>80.1</td>
</tr>
<tr>
<td>30</td>
<td>21.0</td>
<td>79.0</td>
</tr>
</tbody>
</table>

Table 2 — Variation of elemental composition with current density on amorphous Ni-S-Co alloy

<table>
<thead>
<tr>
<th>CoCl₂ concentration (gpl)</th>
<th>10 mA/cm²</th>
<th>20 mA/cm²</th>
<th>30 mA/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>%S</td>
<td>%Co</td>
<td>%S</td>
<td>%Co</td>
</tr>
<tr>
<td>10</td>
<td>27.0</td>
<td>5.0</td>
<td>28.2</td>
</tr>
<tr>
<td>20</td>
<td>28.6</td>
<td>5.5</td>
<td>28.6</td>
</tr>
<tr>
<td>30</td>
<td>29.2</td>
<td>5.7</td>
<td>29.3</td>
</tr>
</tbody>
</table>

Hydrogen evolution reaction

The over potential for hydrogen evolution reaction on amorphous Ni-S alloy was 286 mV lower than that of mild steel. In the low over potential region, exchange current density on Ni-S alloy was 4.6 and 1.7 mA/cm² for amorphous Ni-S alloy and mild steel, respectively. Figure 4 presents the steady state cathodic polarization curves for h.e.r on amorphous Ni-S alloy at various temperatures. Exchange current densities increased with temperatures (Table 3). On amorphous Ni-S-Co alloy deposits hydrogen evolution reaction was studied at various temperatures (Fig. 5). In both low and high over potential regions, exchange current densities increased with temperatures (Table 4).

In order to understand more about h.e.r, cathodic polarization experiments were carried out at various pH values (Fig. 6). At a given cathodic current densities over potentials were followed and in low current density region, (dη/dpH)₁ =0.022. Figure 7 presents cathodic polarization curves for mild steel,
Ni-S and Ni-S-Co alloy deposits in NaOH solutions (pH 12). In the lower and higher over potentials regions, the exchange current densities on Ni-S-Co> Ni-S> mild steel. In the higher over potential region value of 1.7, 39.2 and 50.1 mA/cm² were obtained on mild steel, Ni-S alloy and Ni-S-Co alloy respectively.

Heat treatment

Amorphous Ni-S-Co alloy deposits were heat treated and DTA curves obtained on the alloy revealed two peaks at 371 and 445K respectively suggesting two phase transformations. The amorphous nickel transformed to crystalline nickel. During the second peak region Ni₃S₂ crystals were seen. XRD patterns obtained at 353 K alloy deposit revealed only amorphous Ni-S-Co alloy (Fig. 8). On 413 K heat treated alloy deposit some Ni₃-xS₂ phase was seen. Hydrogen evolution reaction was studied on heat treated alloy. Hydrogen evolution reaction was found to occur faster on amorphous alloy than on heat treated alloy deposits. Heat treatment temperatures favoured crystallinity and thus decreased the h.e.r rate (Table 5).

Discussions

From uncomplexing solutions the deposition of nickel in the acidic pH range was found to occur as:

$$\text{H}_2\text{O} + 2e \rightarrow \text{H}_2 + \text{OH}^-$$

$$\text{Ni}^{2+} + \text{OH}^- \rightarrow \text{NiOH}^+$$

$$\text{NiOH}^+ + e \rightarrow \text{NiOH}_{\text{ads}}$$

$$\text{NiOH} + e \rightarrow \text{Ni} + \text{OH}^-$$

In presence of ethylamine, a complexant, nickel deposition was found to occur as:

$$\text{Ni(II) complex} + 2\text{OH}^- + 2e \rightarrow \text{Ni} + 2\text{OH}^- + (\text{amine})$$
Fig. 8 — XRD patterns of Ni-S-Co alloy deposits heat treated for one hour at various temperatures

Table 5 — Effect of heat treatment on the hydrogen evolution reaction on amorphous Ni-S-Co alloy at 353 K

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Tafel slopes Low η</th>
<th>mV/decade High η</th>
<th>Exchange current density Low η</th>
<th>mA/cm² High η</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphous</td>
<td>62</td>
<td>121</td>
<td>6.2</td>
<td>51</td>
</tr>
<tr>
<td>353K</td>
<td>87</td>
<td>137</td>
<td>5.4</td>
<td>46.8</td>
</tr>
<tr>
<td>413K</td>
<td>86</td>
<td>145</td>
<td>4.3</td>
<td>35.2</td>
</tr>
<tr>
<td>473K</td>
<td>91</td>
<td>159</td>
<td>3.4</td>
<td>28.4</td>
</tr>
</tbody>
</table>

In the present study thiourea forms complexes with nickel and reduction of Ni{CS₂(NH₂)₂}²⁺ takes place at negative potentials with the incorporation of elemental sulphur.

Ni{CS₂(NH₂)₂}²⁺+2e→Ni + (complexant)

When CoCl₂ was added to the bath, there existed Co{CS₂(NH₂)₂}²⁺ and Co{CS₂(NH₂)₂}²⁺ complexes. Reduction of these complexes gave rise to the deposition of cobalt. Deposition over extended cathodic current densities favoured sulphur content in the alloy. During Ni-S-Co alloy deposition two cathodic reactions are involved. The first one is the direct depositions of Ni²⁺ and Co²⁺ ions with thiourea, respectively which competes with the first reaction. The cathodic polarization of such complex ions increase with the current density and therefore the contents of nickel and cobalt increase as the deposition of nickel and cobalt ions became predominant. The amorphous structure decreased with increase in cathodic current density. Impedance spectral analysis of hydrogen evolution reaction from 0.5 M H₂SO₄ on deposited ruthenium and rhodium electrodes revealed electron transfer, formation of adsorbed hydrogen and H₂ desorption steps. Rhodium was found to be more electrocatalytic.

In order to correlate M-H bond energy and exchange current density, various ideas like “Volcano” shaped curves were suggested. As h.e.r involves the transfer of the electron from an electrode surface (work function), the density of states of electrons close to the energy level of metal surface (density of states at E_F) is an important parameter governing electrochemical reaction rates. The electron density of states at E_F may be increased by forming substitution alloys and inter metallic phases to improve the catalytic activity. In the present study the lattice parameter and inter atomic distances of Ni-Co-S alloyed materials change due to the changes in the arrangement of atoms. When inter metallic bonding results in the reduced lattice parameter, the inter atomic distance increased the density of states at E_F. The amorphous structure of Ni-S-Co alloy offered enhanced catalytic activity due to increased surface area. Heat treatment of the alloys at 413 and 473 K destroyed the amorphous nature and crystallinity did not favour catalytic activity. The catalytic activity became 50% when the heat treatment temperature was 473 K.

Conclusions
(i) In presence of thiourea Watt’s bath offered amorphous Ni-S alloy. In presence of CoCl₂ and thiourea amorphous Ni-S-Co alloy was formed.
(ii) Hydrogen evolution reaction occurred faster from 28 wt% NaOH on amorphous Ni-S-Co alloy compared to amorphous Ni-S alloy.
(iii) Hydrogen evolution reaction rate increased with temperature on these amorphous alloys.
(iv) A fast Volmer followed by slow Heyrovsky reaction occurred on the surfaces of these alloys.
(v) Heat treatment of amorphous Ni-S-Co alloy decreased the electro catalytic activity due to the disturbance in the amorphous structure.
References
2 Kerston H & Young W T, J Appl Phys, 8 (1937) 133.