Synthesis, characterization and thermal decomposition of di-(2,4,6-trimethylanilinium) sulphate†

Inder Pal Singh Kapoora, Manisha Kapoora, Gurdip Singh* & Roland Fröhlichb

aDepartment of Chemistry, DDU Gorakhpur University, Gorakhpur 273 009, India
bOrganisch-Chemisches Institut, Universität Münster, D-48149 Münster, Germany

Received 31 December 2009; accepted 4 June 2010

Di-(2,4,6-trimethylanilinium) sulphate [2,4,6-TMAS] was synthesised by reaction of 2,4,6-trimethylaniline with concentrated sulphuric acid at room temperature. The crystal structure of this salt was determined using single crystal X-ray diffraction. It crystallizes in orthorhombic space group Pnă2, a = 7.7115(1) Å, b = 30.3746 (6) Å, c =16.9251(3) Å, a=β=γ [°]=90°, V=3964.43 (12) A and Z=8. The structure contains 2,4,6-trimethylanilinium ions that share vertices through intermolecular H- bonds with sulphate ions and a water molecule. Notably thermal and microwave heatings of di-(2,4,6-TMA)S have afforded 3-amino-2,4,6-trimethylbenzenesulphonic acid (3-A-2,4,6-TMBSA) with release of a molecule of amine and water. It has been suggested that the proton transfer from anilinium to SO$_4^{2-}$ ion is a primary and rate controlling step. Further di-(2,4,6-TMA)S and 3-A-2,4,6-TMBSA were characterized by infrared, mass spectrometry, elemental and thermogravimetric- differential scanning calorimetric (TG-DSC) analyses. The mean value for the energy of activation (83.0 kJ mol$^{-1}$) for the conversion of di-(2,4,6-TMA)S to 3-A-2,4,6-TMBSA has been determined from isothermal thermogravimetry data.

Keywords: 2,4,6-trimethylaniline, X-ray diffraction, Thermal, Microwave, 3-Amino-2,4,6-trimethylbenzenesulphonic acid

Sulphonation of arylamines has been conventionally achieved by “baking process”1-3, which involves multi-step reactions and use of organic solvents2,3. Singh et al.4-9 have carried out sulphonation of various mono and di-substituted arylamines in solid state via an intermediate salt formation. Proton transfer process10,11 plays an important role in the thermal decomposition of amine salts. Solid state sulphonation is simple, convenient and ecofriendly, because no solvent is required. In this process, the sulphate salts are subjected to thermal and microwave energy by which the corresponding aminobenzenesulphonic acids are formed which have a wide range of applications12 in organic syntheses, dyestuffs, medicines, detergents and tanneries. Compared to thermal process, microwave irradiations13 gave their sulphonated product in lesser time.

In the line of these findings, we have prepared and characterized di-(2,4,6-TMA)S which on thermal and microwave treatment, in solid state, forms (3-A-2,4,6-TMBSA).

†Part-20

Annotations:

- **Keywords:** 2,4,6-trimethylaniline, X-ray diffraction, Thermal, Microwave, 3-Amino-2,4,6-trimethylbenzenesulphonic acid

- **Materials and apparatus:** 2,4,6-trimethylaniline (Merck), conc. H$_2$SO$_4$ (Merck), ethyl acetate (Merck), silica gel (TLC grade, Qualigens) and BaCl$_2$ were used as received.

- **Preparation and characterization:** White amorphous precipitate of di-(2,4,6-TMA)S were obtained immediately at room temperature (RT) when 2,4,6-trimethylaniline mixed with conc. H$_2$SO$_4$ in 2:1 molar ratio as shown in Scheme 1.
NH\textsubscript{2}CH\textsubscript{3}CH\textsubscript{3}H\textsubscript{2}SO\textsubscript{4}RT\textsubscript{2:1}\textsubscript{CH}\textsubscript{3}CH\textsubscript{3}CH\textsubscript{3}\textsubscript{+}\textsubscript{CH}\textsubscript{3}CH\textsubscript{3}CH\textsubscript{3}\textsubscript{--}\textsubscript{N}\textsubscript{+}\textsubscript{NH}_{3}\textsubscript{SO}_{4}\textsubscript{H}\textsubscript{3}

Scheme 1—Preparation of di-(2,4,6-TMA)S from 2,4,6-trimethylaniline

The precipitates were washed with ethyl acetate to remove any excess of amine and recrystallized from double distilled water. Transparent long needle shaped crystals were obtained on keeping the above solution for 48 h at room temperature. The purity of the salt was checked by TLC and identified by single X-ray crystallography, elemental and spectral analyses. The physical parameters are given in Table 1.

X-rays crystallography

Suitable transparent needle shaped, single crystals of di-(2,4,6-TMA)S with approximate dimension of 0.35×0.30×0.06 mm were obtained by recrystallizing the crude product by slow evaporation of their aqueous solution. The data collection was done at low temperature (223 K) using a Nonius Kappa CCD diffractometer equipped with a rotating anode generator Nonius FR 591. The programs that were used involve data collection by Hooft and Nonius15 and data reduction by Otwinowski and Minor6. The structure was solved by direct methods (program SHELXS-97)17 and refined by the full matrix least squares method on all \(F^2\) data using SHELXL-9718. Hydrogen atoms were placed in geometrically calculated positions by using a riding model. Images were created with the SCHAKAL program19. Refinement with anisotropic thermal parameters for non-hydrogen atoms led to \(R\) values of 0.051.

The crystal structure of salt is shown in Fig. 1; whereas its crystal data and structure refinement and hydrogen bond parameters are summarized in Tables 2 and 3.

Elemental and spectroscopic analyses

The C, H, N analyses were done with elemental Vario EL (111) Carta Erba 1108 instrument. The FTIR spectra were recorded with Perkin-Elmer RXL spectrometer in the range of 4000-450 cm\(^{-1}\). The FAB mass spectra was recorded on J60LQ SX 102/Da-6000 mass spectrometer using Xenon gas.

Conversion of sulphate salt into corresponding aminobenzenesulphonic acid

Thermal study

The sample was heated, in a tube furnace at 230°C for 20 min under reduced pressure, a gray colour

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structural formula</th>
<th>Crystal colour</th>
<th>M.P °C</th>
<th>TLC</th>
<th>Yield %</th>
<th>C H N (calculated)</th>
<th>IR (cm(^{-1}))</th>
<th>Mass (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di (2,4,6-TMA)S</td>
<td></td>
<td>White needles</td>
<td>194 a:b:c</td>
<td>0.98</td>
<td>78</td>
<td>56.7 7.7 7.1</td>
<td>3400 ((\text{NH}_3)), 3027 (v)=CH, 1618 (v), 1585 (v), 1500 (v), 1483 (v)</td>
<td>369,368 (80), 271 (60), 95 (20)</td>
</tr>
<tr>
<td>3-A-2,4,6- TMBSA</td>
<td></td>
<td>Gray amorphous</td>
<td>170 a:b:c</td>
<td>0.92</td>
<td>57</td>
<td>51.27 56.7</td>
<td>3448,3346 (m), 1544,1502,1479 (N-str.), 1579, 1280 (m-s) C-Nbend, 1144 (m) C-Nstr.</td>
<td>135 (100), 93 (20), 154 (20), 271 (30),</td>
</tr>
</tbody>
</table>

Eluent a= DMSO, b=ethylacetate, c= H\textsubscript{2}O; locating reagent- Iodine
residue was obtained. The residue was then washed with a solvent, recrystallized from water, concentrated under vacuum and their purity was checked by TLC. The reaction products was identified as 3-A-2,4,6-TMBSA by spectral and elemental analyses (Table 1).

Moreover, this acid gave effervescences with aq. NaHCO₃.

Microwave study

The salt was powdered, placed in a Pyrex test tube and then loaded into a microwave oven (domestic) and irradiated for appropriate times with a power of 700 W. After completion of the reaction (monitored by TLC), contents were cooled to remove impurity and recrystallized from water to get acids in a pure form. The acid was characterized by elemental and spectral analysis (Table 1).

Thermal analysis

Simultaneous TG-DTG-DSC analysis on the salt (sample weight 5.8 mg, 100-200 mesh) has been done by using Perkin Elmer (Pyris Diamond) instrument at a heating rate of 10°C/min (heat flow from 40-700°C in nitrogen atmosphere). The thermogram is shown in Fig. 2.

Isothermal TG

Isothermal TG studies (wt. 20 mg, 100-200 mesh) were undertaken in static air using indigenously fabricated TG apparatus 20 at appropriate temperatures. The accuracy of furnace was ±1°C. A round bottom
gold crucible was used as a sample holder. The fraction decomposition (α) has been plotted against time (min) and the plots are shown in Fig. 3.

Kinetic analysis

Kinetic analysis of solid state decomposition is usually based on a single step kinetic equation:

$$\frac{d\alpha}{dt} = k(T)f(\alpha) \quad \ldots (1)$$

where t is the time, T is the temperature, α is the extent of conversion ($0 < \alpha < 1$), $k(T)$ is the rate constant and $f(\alpha)$ is the reaction model, which describes the dependence of the reaction rate on the extent of reactions. The value of α is experimentally derived from the global mass loss in TG experiments. The reaction model may take various forms, some of which are shown in Table 4. The temperature dependence of $k(T)$ can be satisfactorily described by the Arrhenius equation, whose substitution into Eq. (1) yields

$$-\ln t = \ln A - \frac{E}{RT} \quad \ldots (2)$$

where, A is pre-exponential factor, E is activation energy and R is the gas constant.

Model fitting method

Rearrangement and integration of Eq. (1) for isothermal conditions gives

$$g(\alpha) = k_j(T)t \quad \ldots (3)$$

where $g(\alpha) = \int_0^\alpha f(\alpha)^{-1} d\alpha$ is the integrated form of the reaction model. The subscript j has been introduced to emphasize that substituting a particular reaction model in Eq. (3) results in evaluating the corresponding rate constant, which is determined from the slope of a plot of $g(\alpha)$ versus t. For each reaction model selected, the rate constants are evaluated at several temperatures T_i and Arrhenius parameters are determined using the Arrhenius equation (4) in its logarithmic form

$$\ln k_j(T_i) = \ln A_j - \frac{E_j}{R T_i} \quad \ldots (4)$$

Arrhenius parameters were evaluated for isothermal experimental data by the model fitting method.

Isoconversional method

This method allows the activation energy to be evaluated without making any assumptions about the reaction model. Additionally, the method evaluates the effective activation energy as a function of the extent of conversion which allows one to explore multi-step kinetics.

The basic assumption of the isoconversional method is that the reaction model as defined in Eq. (1) is not dependent on temperature or heating rate. Under isothermal conditions, on combining Eqs (3) and (4) we get

$$-\ln t_{\alpha_i} = \ln \left[\frac{A_i}{g(\alpha)}\right] - \frac{E_i}{RT_i}$$

where E_i is evaluated from the slope of the plot of $-\ln t_{\alpha_i}$ against T_i^{-1}. Thus, E_i at various α_i for di-(2, 4, 6-TMA)S have been evaluated and the E_i dependencies are shown in Fig. 4.

Results and Discussion

The X-ray crystallography, elemental and spectral data clearly confirm the formation of di-(2,4, 6-TMA)S salt when 2,4,6-trimethylaniline reacts with...
concentrated H$_2$SO$_4$ in 2:1 molar ratio. Elemental data obtained from di-(2,4,6-TMA)S match with theoretically calculated values with an accuracy of \pm 1%. FTIR spectrum of salt show $(\gamma^+\text{NH}_3)$ at 3432 cm$^{-1}$, $(\delta\text{N-H})$ at 1483, $(\gamma\text{C-H})$ at 1381.5 cm$^{-1}$, C=C stretching at 1618, 1585, 1561, 1483, while sharp peaks at γ 738 and 1121 cm$^{-1}$ are due to SO$_4^{2-}$. The mass spectroscopy shows base peak at m/z 135 (100%) may be due to 2, 4, 6 trimethyl anilinium cation and at 368 molecular ion peak of di-(2,4,6-TMA)S.

The compound crystallizes from slow evaporation of their aq. solution in the orthorhombic crystal system, space group Pna 2$_1$ with unit cell dimension $a=7.7115(1)$ Å, $b=30.3746 (6)$ Å, $c=16.9251(3)$ Å, $Z=8$, $D_{x}=1.295$ g cm$^{-3}$ (Table 1). It is very clear from X-ray analyses (Fig. 1) that it confirms to the molecular formula (C$_9$H$_{14}$N$_2$SO$_4$)H$_2$O having one molecule of water of crystallization. The two moieties of anilinium cation are bonded to one sulphate ion by electrostatic as well as intermolecular hydrogen bonds. Further, one molecule of water is also intermolecular hydrogen bonded with $-\text{NH}_2$ of amine moieties (Table 3).

The TG thermograms (Fig. 2) in nitrogen atmosphere shows that di-(2,4,6-TMA)S undergo mass loss of 42% (41.5% calculated) by the evolution of amine and a water molecule (temperature range of 90-190°C) and corresponding sulphonic acid is formed. This was also confirmed by Co-TLC and chemical analyses. The stability of corresponding sulphonic acid is shown by the plateau in TG curves (190-280°C). Heating the sample beyond this temperature resulted in the decomposition of corresponding sulphonic acid by deamination, desulphonation, dealkylation followed by ring rupture. It has also been observed that heating this sulphate salt in air at higher temperature gave black products which contain their acid. This is presumably due to the formation of quinonoid like materials arising from hydroxylation, oxidation and polymerization of amino compounds. DSC (Fig. 2) shows two peaks which also confirm the two step decomposition. First peak seems to be due to sulphonation process to form corresponding sulphonic acid and second peak corresponds to the decomposition of acid form.

In order to prepare the pure form, it was thought best to remove the corresponding amine, while heating under low pressure which is formed along with their acids. Thus, the sample was heated at 230°C for 20 min in Hg pressure were found to contain 3-A-2,4,6-TMBSA. Solid residues were washed with appropriate solvent and the purity was then confirmed by TLC. Further, the acid is confirmed by elemental and spectral analyses (Table 1).

In order to get the same product (3-A-2,4,6-TMBSA) in shorter time, the salt was subjected to microwave irradiation at 700 W for 4 min, to form the acid. It has been observed that compare to classical methods, the MW irradiation took a short time (Scheme 2).

The isothermal TG in static air has been done to know the kinetics of the thermal decomposition of above salt, using 14 mechanism based kinetic models. In the model fitting method, the kinetics is analyzed by choosing a best fit model based on the value of the correlation coefficient r close to 1. The corresponding
values of E_a from different models for a particular sample are nearly equal irrespective to the equation used. Average value of activation energy is 83.0 kJ/mol from isothermal TG data (Table 4).

In addition another method, called isoconversional method is known to permit estimation of activation energy independent of the model used. In this method, activation energy corresponding to the extent of conversion of the sample is evaluated. As is clear from the Fig. 4, activation energy has different value at different α.

The conversion of salt to corresponding ring substituted aminobenzenesulphonic acid by thermal and microwave treatment is shown in Scheme 2. It is inferred that under both treatments salt decompose to regenerate amine and acid by proton transfer7,9,10 from substituted anilinium ion to the sulphate ion in condensed phase. Further interaction between amine and sulphuric acid at higher temperature yields sulphonated product (acid).

Conclusions

Thermal and microwave decomposition of di-(2,4,6-TMA)S gives 3-A-2,4,6-TMBSA by proton transfer and a subsequent sulphonation process. Compared to thermal, the microwave irradiation takes a short time to form corresponding acid.

Acknowledgements

Thanks are due to Head of Chemistry Department, DDU Gorakhpur University for providing laboratory facilities; SAIF, Cochin for TG-DSC analyses and CDRI, Lucknow for elemental and spectral analyses. Financial assistance by UGC to Manisha Kapoor and CSIR for providing Emeritus Scientist to Dr G Singh is a highly appreciated.

References